27,342 research outputs found
Observation of fast stochastic ion heating by drift waves
Anomalously fast ion heating has been observed in the Caltech Encore tokamak [Phys. Rev. Lett. 59, 1436 (1987)], with the use of laser-induced fluorescence. This heating was found to be independent of electron temperature, but was well correlated with the presence of large-amplitude drift-Alfvén waves. Evidence is presented that suggests that the heating is stochastic and occurs when the ion displacement due to polarization drift becomes comparable to the perpendicular wavelength, i.e., when k[perpendicular] (mik[perpendicular] phi0/qB^2)~1. Stochastic heating may also be the cause of the anomalously high ion temperatures observed in reversed-field pinches
Variable Cycle Engine Technology Program Planning and Definition Study
The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations
Tests of non-standard electroweak couplings of right-handed quarks
The standard model can be interpreted as the leading order of a Low-Energy
Effective Theory (LEET) invariant under a higher non linearly realized symmetry
equipped with a systematic power
counting. Within the minimal version of this ``not quite decoupling'' LEET, the
dominant non-standard effect appears at next-to-leading order (NLO) and is a
modification of the couplings of fermions to W and Z. In particular, the
coupling of right-handed quarks to Z is modified and a direct coupling of
right-handed quarks to W emerges. Charged right-handed lepton currents are
forbidden by an additional discrete symmetry in the lepton sector originally
designed to suppress Dirac neutrino masses. A complete NLO analysis of
experimental constraints on these modified couplings is presented. Concerning
couplings of light quarks, the interface of the electroweak tests with QCD
aspects is discussed in detail.Comment: 56 pages, 14 figures, v2: references added, minor modifications in
the text, accepted for publication in JHE
Photon breeding mechanism in relativistic jets: astrophysical implications
Photon breeding in relativistic jets involves multiplication of high-energy
photons propagating from the jet to the external environment and back with the
conversion into electron-positron pairs. The exponential growth of the energy
density of these photons is a super-critical process powered by the bulk energy
of the jet. The efficient deceleration of the jet outer layers creates a
structured jet morphology with the fast spine and slow sheath. In initially
fast and high-power jets even the spine can be decelerated efficiently leading
to very high radiative efficiencies of conversion of the jet bulk energy into
radiation. The decelerating, structured jets have angular distribution of
radiation significantly broader than that predicted by a simple blob model with
a constant Lorentz factor. This reconciles the discrepancy between the high
Doppler factors determined by the fits to the spectra of TeV blazars and the
low apparent velocities observed at VLBI scales as well as the low jet Lorentz
factors required by the observed statistics and luminosity ratio of
Fanaroff-Riley I radio galaxies and BL Lac objects. Photon breeding produces a
population of high-energy leptons in agreement with the constraints on the
electron injection function required by spectral fits of the TeV blazars.
Relativistic pairs created outside the jet and emitting gamma-rays by inverse
Compton process might explain the relatively high level of the TeV emission
from the misaligned jet in the radio galaxies. The mechanism reproduces basic
spectral features observed in blazars including the blazar sequence (shift of
the spectral peaks towards lower energies with increasing luminosity). The
mechanism is very robust and can operate in various environments characterised
by the high photon density.Comment: 6 pages, 3 figures, to appear in the proceedings of the HEPRO
conference, September 24-28, 2007, Dublin, Irelan
Real-time phase-selective data acquisition system for measurement of wave phenomena in pulsed plasma discharges
A novel data acquisition system and methodology have been developed for the study of wave phenomena in pulsed plasma discharges. The method effectively reduces experimental uncertainty due to shot-to-shot fluctuations in high repetition rate experiments. Real-time analysis of each wave form allows classification of discharges by wave amplitude, phase, or other features. Measurements can then be constructed from subsets of discharges having similar wave properties. The method clarifies the trade-offs between experimental uncertainty reduction and increased demand for data storage capacity and acquisition time. Finally, this data acquisition system is simple to implement and requires relatively little equipment: only a wave form digitizer and a moderately fast computer
Observations of fast anisotropic ion heating, ion cooling, and ion recycling in large-amplitude drift waves
Large-amplitude drift wave fluctuations are observed to cause severe ion temperature oscillations in plasmas of the Caltech Encore tokamak [J. M. McChesney, P. M. Bellan, and R. A. Stern, Phys. Fluids B 3, 3370 (1991)]. Experimental investigations of the complete ion dynamical behavior in these waves are presented. The wave electric field excites stochastic ion orbits in the plane normal (perpendicular to) to B, resulting in rapid perpendicular to heating. Ion-ion collisions impart energy along (parallel to) B, relaxing the perpendicular to-parallel to temperature anisotropy. Hot ions with large orbit radii escape confinement, reaching the chamber wall and cooling the distribution. Cold ions from the plasma edge convect back into the plasma (i.e., recycle), causing further cooling and significantly replenishing the density depleted by orbit losses. The ion-ion collision period tau(ii)similar to Tau(3/2)/n fluctuates strongly with the drift wave phase, due to intense (approximate to 50%) fluctuations in n and Tau. Evidence for particle recycling is given by observations of bimodal ion velocity distributions near the plasma edge, indicating the presence of cold ions (0.4 eV) superposed atop the hot (4-8 eV) plasma background. These appear periodically, synchronous with the drift wave phase at which ion fluid flow from the wall toward the plasma center peaks. Evidence is presented that such a periodic heat/loss/recycle/cool process is expected in plasmas with strong stochastic heating
Kondo insulator SmB6 under strain: surface dominated conduction near room temperature
SmB6 is a strongly correlated mixed-valence Kondo insulator with a newly
discovered surface state, proposed to be of non-trivial topological origin.
However, the surface state dominates electrical conduction only below T* ~ 4 K
limiting its scientific investigation and device application. Here, we report
the enhancement of T * in SmB6 under the application of tensile strain. With
0.7% tensile strain we report surface dominated conduction at up to a
temperature of 240 K, persisting even after the strain has been removed. This
can be explained in the framework of strain-tuned temporal and spatial
fluctuations of f-electron configurations, which might be generally applied to
other mixed-valence materials. We note that this amount of strain can be indued
in epitaxial SmB6 films via substrate in potential device applications.Comment: to appear in Nature Material
- âŠ