2,552 research outputs found

    Shape characteristics of the aggregates formed by amphiphilic stars in water: dissipative particle dynamics study

    Full text link
    We study the effect of the molecular architecture of amphiphilic star polymers on the shape of aggregates they form in water. Both solute and solvent are considered at a coarse-grained level by means of dissipative particle dynamics simulations. Four different molecular architectures are considered: the miktoarm star, two different diblock stars and a group of linear diblock copolymers, all of the same composition and molecular weight. Aggregation is started from a closely packed bunch of NaN_{\text a} molecules immersed into water. In most cases, a single aggregate is observed as a result of equilibration, and its shape characteristics are studied depending on the aggregation number NaN_{\text a}. Four types of aggregate shape are observed: spherical, rod-like and disc-like micelle and a spherical vesicle. We estimate "phase boundaries" between these shapes depending on the molecular architecture. Sharp transitions between aspherical micelle and a vesicle are found in most cases. The pretransition region shows large amplitude oscillations of the shape characteristics with the oscillation frequency strongly dependent on the molecular architecture.Comment: 10 pages, 7 figure

    A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus

    Get PDF
    Cell-cell contacts play a vital role in intracellular signaling, although the molecular mechanisms of these signaling pathways are not fully understood. E-cadherin, an important mediator of cell-cell adhesions, has been shown to be cleaved by γ-secretase. This cleavage releases a fragment of E-cadherin, E-cadherin C-terminal fragment 2 (E-cad/CTF2), into the cytosol. Here, we study the fate and function of this fragment. First, we show that coexpression of the cadherin-binding protein, p120 catenin (p120), enhances the nuclear translocation of E-cad/CTF2. By knocking down p120 with short interfering RNA, we also demonstrate that p120 is necessary for the nuclear localization of E-cad/CTF2. Furthermore, p120 enhances and is required for the specific binding of E-cad/CTF2 to DNA. Finally, we show that E-cad/CTF2 can regulate the p120-Kaiso-mediated signaling pathway in the nucleus. These data indicate a novel role for cleaved E-cadherin in the nucleus

    Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond

    Full text link
    We present systematic measurements of longitudinal relaxation rates (1/T11/T_1) of spin polarization in the ground state of the nitrogen-vacancy (NV^-) color center in synthetic diamond as a function of NV^- concentration and magnetic field BB. NV^- centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV^- center concentrations. Values of (1/T11/T_1) were measured for each spot as a function of BB.Comment: 4 pages, 8 figure

    Dynamical Scaling Behavior of Percolation Clusters in Scale-free Networks

    Full text link
    In this work we investigate the spectra of Laplacian matrices that determine many dynamic properties of scale-free networks below and at the percolation threshold. We use a replica formalism to develop analytically, based on an integral equation, a systematic way to determine the ensemble averaged eigenvalue spectrum for a general type of tree-like networks. Close to the percolation threshold we find characteristic scaling functions for the density of states rho(lambda) of scale-free networks. rho(lambda) shows characteristic power laws rho(lambda) ~ lambda^alpha_1 or rho(lambda) ~ lambda^alpha_2 for small lambda, where alpha_1 holds below and alpha_2 at the percolation threshold. In the range where the spectra are accessible from a numerical diagonalization procedure the two methods lead to very similar results.Comment: 9 pages, 6 figure

    Entropy-induced separation of star polymers in porous media

    Full text link
    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of ff-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r)rag(r) \sim r^{-a}. Applying the field-theoretical renormalization group approach we show in a double expansion in ϵ=4d\epsilon=4-d and δ=4a\delta=4-a that there is a range of correlation strengths δ\delta for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3d=3 and different values of the correlation parameter aa the corresponding scaling exponents γf\gamma_f that govern entropic effects. We find that γf1\gamma_f-1, the deviation of γf\gamma_f from its mean field value is amplified by the disorder once we increase δ\delta beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are: star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers.Comment: 14 pages, 7 figure

    Multifractality of Brownian motion near absorbing polymers

    Full text link
    We characterize the multifractal behavior of Brownian motion in the vicinity of an absorbing star polymer. We map the problem to an O(M)-symmetric phi^4-field theory relating higher moments of the Laplacian field of Brownian motion to corresponding composite operators. The resulting spectra of scaling dimensions of these operators display the convexity properties which are necessarily found for multifractal scaling but unusual for power of field operators in field theory. Using a field-theoretic renormalization group approach we obtain the multifractal spectrum for absorbtion at the core of a polymer star as an asymptotic series. We evaluate these series using resummation techniques.Comment: 18 pages, revtex, 6 ps-figure

    The potential of the ground state of NaRb

    Full text link
    The X1Σ+^{1}\Sigma ^{+} state of NaRb was studied by Fourier transform spectroscopy. An accurate potential energy curve was derived from more than 8800 transitions in isotopomers 23^{23}Na85^{85}Rb and 23^{23}Na87^{87}Rb. This potential reproduces the experimental observations within their uncertainties of 0.003 \rcm to 0.007 \rcm. The outer classical turning point of the last observed energy level (v=76v''=76, J=27J''=27) lies at 12.4\approx 12.4 \AA, leading to a energy of 4.5 \rcm below the ground state asymptote.Comment: 8 pages, 6 figures and 2 table

    Two-Dimensional Copolymers and Exact Conformal Multifractality

    Full text link
    We consider in two dimensions the most general star-shaped copolymer, mixing random (RW) or self-avoiding walks (SAW) with specific interactions thereof. Its exact bulk or boundary conformal scaling dimensions in the plane are all derived from an algebraic structure existing on a random lattice (2D quantum gravity). The multifractal dimensions of the harmonic measure of a 2D RW or SAW are conformal dimensions of certain star copolymers, here calculated exactly as non rational algebraic numbers. The associated multifractal function f(alpha) are found to be identical for a random walk or a SAW in 2D. These are the first examples of exact conformal multifractality in two dimensions.Comment: 4 pages, 2 figures, revtex, to appear in Phys. Rev. Lett., January 199

    Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels

    Full text link
    Experimental signals of non-linear magneto-optical resonances at D1 excitation of natural rubidium in a vapor cell have been obtained and described with experimental accuracy by a detailed theoretical model based on the optical Bloch equations. The D1 transition of rubidium is a challenging system to analyze theoretically because it contains transitions that are only partially resolved under Doppler broadening. The theoretical model took into account all nearby transitions, the coherence properties of the exciting laser radiation, and the mixing of magnetic sublevels in an external magnetic field and also included averaging over the Doppler profile. Great care was taken to obtain accurate experimental signals and avoid systematic errors. The experimental signals were reproduced very well at each hyperfine transition and over a wide range of laser power densities, beam diameters, and laser detunings from the exact transition frequency. The bright resonance expected at the F_g=1 --> F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position of the transition due to the influence of the nearby F_g=2 --> F_e=2 transition, which is a dark resonance whose contrast is almost two orders of magnitude larger than the contrast of the bright resonance at the F_g=2 --> F_e=3 transition. Even in this very delicate situation, the theoretical model described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure

    Precision characterisation of two-qubit Hamiltonians via entanglement mapping

    Full text link
    We show that the general Heisenberg Hamiltonian with non-uniform couplings can be characterised by mapping the entanglement it generates as a function of time. Identification of the Hamiltonian in this way is possible as the coefficients of each operator control the oscillation frequencies of the entanglement function. The number of measurements required to achieve a given precision in the Hamiltonian parameters is determined and an efficient measurement strategy designed. We derive the relationship between the number of measurements, the resulting precision and the ultimate discrete error probability generated by a systematic mis-characterisation, when implementing two-qubit gates for quantum computing.Comment: 6 Pages, 3 figure
    corecore