68,326 research outputs found
Singlet baryons in the graded symmetry approach to partially quenched QCD
Progress in the calculation of the electromagnetic properties of baryon
excitations in lattice QCD is presenting new challenges in the determination of
sea-quark loop contributions to matrix elements. A reliable estimation of the
sea-quark loop contributions presents a pressing issue in the accurate
comparison of lattice QCD results with experiment. In this article, an
extension of the graded symmetry approach to partially quenched QCD is
presented, which builds on previous theory by explicitly including
flavor-singlet baryons in its construction. The formalism takes into account
the interactions among both octet and singlet baryons, octet mesons, and their
ghost counterparts; the latter enables the isolation of the quark-flow
disconnected sea-quark loop contributions. The introduction of the
flavor-singlet states anticipates the application of the method to baryon
excitations such as the lowest-lying odd-parity Lambda baryon, the
Lambda(1405), which is considered in detail as a worked example.Comment: arXiv copy updated to published version: Phys. Rev. D 94, 094004
(2016
Pupil participation in Scottish schools: final report
This research was commissioned by Learning and Teaching Scotland (LTS) to evaluate the nature of pupil participation in primary and secondary schools across Scotland. The specific objectives of the research were:
<p>· To describe what school staff and pupils understand by the term âpupil participationâ.</p>
<p>· To describe the range and usage of pupil participation mechanisms employed in schools.</p>
<p>· To describe how school staff respect and respond to pupilsâ views and ideas, and those of the wider community.</p>
<p>· To identify the characteristics of schools and classrooms that facilitate effective pupil participation.</p>
<p>· To identify possible barriers to the development of pupil participation in schools and to make suggestions about how these can be overcome.</p>
<p>· To capture examples of effective practice of pupil participation.</p>
<p>· To make suggestions about how pupil participation can help support the implementation of the Curriculum for Excellence.</p>
A Bohmian approach to quantum fractals
A quantum fractal is a wavefunction with a real and an imaginary part
continuous everywhere, but differentiable nowhere. This lack of
differentiability has been used as an argument to deny the general validity of
Bohmian mechanics (and other trajectory--based approaches) in providing a
complete interpretation of quantum mechanics. Here, this assertion is overcome
by means of a formal extension of Bohmian mechanics based on a limiting
approach. Within this novel formulation, the particle dynamics is always
satisfactorily described by a well defined equation of motion. In particular,
in the case of guidance under quantum fractals, the corresponding trajectories
will also be fractal.Comment: 19 pages, 3 figures (revised version
Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures
The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas
Chiral extrapolations for nucleon magnetic moments
Lattice QCD simulations have made significant progress in the calculation of
nucleon electromagnetic form factors in the chiral regime in recent years. With
simulation results achieving pion masses of order ~180 MeV, there is an
apparent challenge as to how the physical regime is approached. By using
contemporary methods in chiral effective field theory, both the quark-mass and
finite-volume dependence of the isovector nucleon magnetic moment are carefully
examined. The extrapolation to the physical point yields a result that is
compatible with experiment, albeit with a combined statistical and systematic
uncertainty of 10%. The extrapolation shows a strong finite-volume dependence;
lattice sizes of L > 5 fm must be used to simulate results within 2% of the
infinite-volume result for the magnetic moment at the physical pion mass.Comment: 7 pages, 12 figures, 1 tabl
Power Counting Regime of Chiral Effective Field Theory and Beyond
Chiral effective field theory complements numerical simulations of quantum
chromodynamics (QCD) on a space-time lattice. It provides a model-independent
formalism for connecting lattice simulation results at finite volume and a
variety of quark masses to the physical world. The asymptotic nature of the
chiral expansion places the focus on the first few terms of the expansion.
Thus, knowledge of the power-counting regime (PCR) of chiral effective field
theory, where higher-order terms of the expansion may be regarded as
negligible, is as important as knowledge of the expansion itself. Through the
consideration of a variety of renormalization schemes and associated
parameters, techniques to identify the PCR where results are independent of the
renormalization scheme are established. The nucleon mass is considered as a
benchmark for illustrating this general approach. Because the PCR is small, the
numerical simulation results are also examined to search for the possible
presence of an intrinsic scale which may be used in a nonperturbative manner to
describe lattice simulation results outside of the PCR. Positive results that
improve on the current optimistic application of chiral perturbation theory
beyond the PCR are reported.Comment: 18 pages, 55 figure
Silicon film solar cell process
The most promising way to reduce the cost of silicon in solar cells while still maintaining performance is to utilize thin films (10 to 20 microns thick) of crystalline silicon. The method of solution growth is being employed to grow thin polycrystalline films of silicon on dissimilar substrates. The initial results indicate that, using tin as the solvent, this growth process only requires operating temperatures in the range of 800 C to 1000 C. Growth rates in the range of 0.4 to 2.0 microns per minute and grain sizes in the range of 20 to 100 microns were achieved on both quartz and coated steel substrates. Typically, an aspect ratio of two to three between the width and the Si grain thickness is seen. Uniform coverage of Si growth on quartz over a 2.5 x 2.5 cm area was observed
Ultraviolet downconverting phosphor for use with silicon CCD imagers
The properties and application of a UV downconverting phosphor (coronene) to silicon charge coupled devices are discussed. Measurements of the absorption spectrum have been extended to below 1000 A, and preliminary results indicate the existence of useful response to at least 584 A. The average conversion efficiency of coronene was measured to be ~20% at 2537 A. Imagery at 3650 A using a backside illuminated 800 X 800 CCD coated with coronene is presented
- âŠ