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SUMMARY

Since transonic flight vehicles normally operate at temperatures and pressures
for which the atmosphere behaves as an ideal diatomic gas, it is important for the
test gas in a transonic cryogenic wind tunnel to act accordingly. Nitrogen is the
most extensively used test gas in cryogenic tunnels. However, the thermodynamic
properties of nitrogen gas deviate from those of an ideal diatomic gas at cryogenic
temperatures. Choice of a suitable equation of state to model nitrogen's behavior
is discussed, and the equation of Beattie and Bridgeman is selected as adequate for
cryogenic wind tunnel use. The real-gas behavior of nitrogen is compared with an
ideal diatomic gas for the following flow processes: isentropic expansions, normal
shocks, boundary layers, and interactions between shock waves and boundary layers.
The only differences in predicted pressure ratio between nitrogen and an ideal gas
which may limit the minimum operating temperatures of transonic cryogenic wind tun-
nels occur at total pressures approaching 9 atm and total temperatures 10 K below the
corresponding saturation temperature. These pressure differences approach 1 percent
for both isentropic expansions and normal shocks.

Several alternative cryogenic test gases - dry air, helium, and hydrogen - are
also analyzed. Differences between air and an ideal diatomic gas are similar to
those for nitrogen and should present no difficulty. However, differences for helium
and hydrogen are over an order of magnitude greater than those for nitrogen or air.
It is concluded that helium and cryogenic hydrogen would not approximate the compres-
sible flow of an ideal diatomic gas.

INTRODUCTION

Under normal conditions, cryogenic wind tunnels should be operated at the lowest
possible total temperature in order to maximize Reynolds number capability for a
given tunnel total pressure or to minimize costs of operating at a fixed Reynolds
number. Not only does Reynolds number increase as the tunnel temperature decreases,
but its rate of increase grows as well, as shown in figure 1, taken from reference 1.
For operation at some Reynolds number below the maximum capability of the tunnel,
testing at the lowest possible temperature maximizes the use of temperature reduction
and minimizes the use of pressure increase to achieve the desired test Reynolds num-
ber. If pressure can be minimized, drive power, which is proportional to pressure,
is minimized, and less liquid nitrogen (LN2) is required for absorbing the heat added
to the stream by the drive fan. Reductions in drive power and LN, usage lead to
lower operational expenses. Operation at a reduced pressure also reduces the model
loads and thus eases balance, sting, and model stress problems. The minimum operat-
ing temperatures are, however, limited by the low-temperature behavior of the test
gas. At some temperature, either the test gas begins to condense or it does
not simulate the nearly ideal-gas behavior of air encountered in transonic flight.

The present paper analyzes the thermodynamic properties of several cryogenic
gases to determine whether they properly simulate an ideal diatomic gas, which is



defined for present purposes as being both thermally perfect (obeys ideal gas law)
and calorically perfect (specific heats are constants with a ratio of 1.4). Although
the greatest attention has been paid to nitrogen as a test gas for transonic
cryogenic wind tunnels, other gases have been considered. For example, conversion

of already existing ambient-temperature blowdown tunnels to cryogenic operation may
be economically accomplished if dry air can be cooled by injecting ligquid nitrogen
directly into the tunnel flow. This process results in a test gas composed of

a mixture of dry air and nitrogen. Also, since unit Reynolds number increases with
decreasing temperature, gases with much lower boiling temperatures than nitrogen have
been considered as a means of testing at higher unit Reynolds numbers at the same
operating pressure. The alternative gases in this category include helium and

hydrogen.

The emphasis of the present study is on the analysis of nitrogen because of the
extensive use of nitrogen as the test gas. The study reviews the reasons to suspect
nonideal behavior of nitrogen, summarizes and compares the available equations of
state for modeling it, and examines its real-gas behavior for a variety of flow pro-
cesses. Also, because of the interest in alternative test gases, air, helium, and
hydrogen are briefly examined.

SYMBOLS

Ao,a,Bo,b,c Beattie~Bridgeman constants, see equation (4)

cP specific heat at constant pressure, J/kg-K

Cy specific heat at constant volume, J/kg-K

Cf local skin friction coefficient, U >
(1/2)pmucn

h specific enthalpy, J/kg

M Mach number

P pressure, N/m2 or atm (1 atm = 101.3 kPa)

Po reference pressure, Pa

Ry Reynolds number based on position x

R specific gas constant, J/kg-K

S specific entropy, J/kg-K

T temperature, K

To reference temperature, K

u velocity, m/sec

v specific volume, m3/kg



X distance from leading edge, m

Y vertical distance from surface, m

Z compressibility factor, pv/RT

Y ratio of specific heats, cp/cV

§ boundary-layer thickness, m

&* boundary-layer displacement thickness, m
(4 incident shock angle, deg

8 boundary-layer momentum thickness, m

P density, kg/m;

T shear stress, N/m2

Subscripts:

aw adiabatic wall

t total conditions

1 upstream of normal shock

2 downstream of normal shock

b free-stream conditions

Superscripts:

* values at reference temperature and pressure
0 zero-pressure conditions

Abbreviations:

BB Beattie-Bridgeman equation of state
NBS—-NASA equation of state developed by the National Bureau of

Standards for NASA
ONSET onset of condensation
SAT saturation

vDwW Van der Waals equation of state



REAL-GAS PROPERTIES OF NITROGEN

The necessity of examining the real-gas behavior of nitrogen at low temperatures
is obvious after graphing the compressibility factor 2 and the ratio of specific
heats Y as a function of temperature. Such graphs are shown in figqures 2 and 3 for
various equations of state, which are discussed later. As temperature decreases,
both Z and Y depart significantly from the values associated with a thermally
perfect (Z = 1.0) and a calorically perfect (Y = 1.4) diatomic gas. Since the goal
of testing in a cryogenic tunnel is to simulate flight through the atmosphere at
conditions for which 2 = 1.0 and Y ® 1.4, figures 2 and 3 suggest that a complete
real—-gas analysis of nitrogen is necessary to ensure the proper performance of nitro-
gen as a test gas.

EQUATIONS OF STATE

Before a complete analysis of nitrogen (or of alternative gases) can be per-
formed, one must be able to characterize the behavior of the gas. The mathematical
form of that characterization is called an equation of state, usually taking a form
similar to

p = f(v,T) (1)

where p 1is pressure and f 1is some arbitrary function of volume and temperature.
The next section summarizes the various equations of state that are typically used to
describe gases.

Equations Available

The simplest and most widely used equation in fluid mechanics is the ideal equa-
tion of state represented by

pv = RT (2)

where R is the specific gas constant. The basic assumptions embodied in equa-
tion (2) are that the gas molecules do not attract each other and that the molecules
themselves occupy no volume. The compressibility factor 2, which equals pv/RT, is
obviously equal to 1.0, and the gas is consequently thermally perfect. That Z does
not equal 1.0 and that Y 1is a function of pressure (ref. 2) as well as of tempera-
ture demonstrate the inability of the ideal equation of state to properly predict the
thermodynamic properties of nitrogen at low temperatures. However, as shown later in
this paper, these deviations do not necessarily affect the ability of nitrogen to
simulate the flow processes of an ideal diatomic gas with Z = 1.0 and Y = 1.4.

Since the ideal equation of state does not adequately represent Z at low tem-
peratures, an improved equation might be obtained by correcting for the assumptions
in the ideal equation. The first step to improve the equation would be to incor-
porate the physical realities of attraction and finite volume into a more advanced
equation of state. This was done successfully by J. D. Van der Waals in 1873, as
described in detail by Glasstone in reference 3, pages 244-300. Attraction between
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molecules requires a positive correction to measured gas pressure, and the finite
volume of the molecules requires a negative correction for specific volume.
Consequently, the Van der Waals equation of state is written as

<% + E5->(v - B) = Rr (3)
v .

where a and B represent constants for a particular gas. Equation (3) is referred
to in this paper as the VDW equation. While the VDW equation of state represented

a substantial improvement over the ideal equation of state in its ability to model
gases, equation-of-state development has continued up to the present.

The remaining equations of state to be discussed here are much more complicated
but remain basically empirical. In 1927, Beattie and Bridgeman developed an equation
of state that has proved to be very useful and accurate. The general form of the
Beattie-Bridgeman equation (to be referred to as the BB equation) is given by

p = Eﬂl3:—El(v + B) -
v

(4)

<2N|:='

where

aea(1-2)

o] v

s-5(1-2)
o] v

e = S
VT3

and where Ao' a, Bo’ b, and ¢ are constants that are tabulated in reference 4
for many different gases. The values of these constants for nitrogen are given below
after conversion to SI units:

A, = 173.60 N-m%/kg?

a = 0.0009342 m3/kg

B, = 0.001801 m>/kg

!

b = -0.000247 m3/kg

1499 m>

Q
il

-K3/kg

The specific gas constant R is taken to be 296.79 J/kg-K.



One of the most complicated equations of state developed specifically for nitro-
gen is that reported by Jacobsen in reference 2. He used a 32-term equation that
describes both liquid and gaseous phases of nitrogen. Jacobsen's equation can also
be found in reference 5, which is a valuable reference because it contains tabular
values of, or equations for, transport properties such as thermal conductivity and

viscositye.

Because of the complexity and the wide range of applicability of Jacobsen's
equation (pressures up to 10 000 atm and temperatures from 65 K to 2000 K), NASA
Langley Research Center contracted with the National Bureau of Standards to develop
an optimized virial equation of state which would focus on pressures only up to
10 atm and temperatures only up to 300 K. Furthermore, the equation of state was
to calculate properties of only gaseous nitrogen. Full details of this work are
included in reference 6. The form of this optimized virial equation of state is

RTp(1 + Bp + sz) (5)

o]
I

where

Bj,1,(3-:'l)/2

t
il
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J
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and p 1is density. Values for the constants B: and C; can be found in
reference 6. This equation of state, referred to as the %BS—NASA equation, is
compared with the other equations in the following section.

Comparing the Equations for Nitrogen

To compare the predictions of the different equations of state for flow prob-
lems, expressions are required for enthalpy h, entropy s, heat capacities . ¢
and c¢_, and sound speed a. Reference 7, a very helpful article, discusses the cal-
culation of these and other thermodynamic properties. The following equations
are taken from that reference with the exception of the expression for Cpr which
contains a typographical error in reference 7:

o
Il

P : _ T
h;‘ + L - .T__BB dp + L_p_RT.'. c 0 dT (6)
o 2 2\37 o} p

™0 P P P T

T [o] Q P
s = S-;O + f -—g— ar - R ln<-g-R—T> + f [% - -1—2(%%) ]dp (7)
T 0 p
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where a variable before an integral sign denotes path of integration, h;o and s%o
are enthalpy and entropy at the reference temperature and pressure, and cp0 and cv0
represent zero-pressure values of specific heats. Although real gases approach
ideal~-gas behavior at zero pressure, that is,

o - YR (11)

°v° =0 - R (12)

the value of Y may still be a significant function of temperature for many gases.
For nitrogen, an eight-term expression is given in reference 2 to approximate ¢
although experience at NASA Langley Research Center indicates that this complexity
is not needed for cryogenic wind tunnel operating conditions. BAlso, absolute values
of the constants h% and s; are not important for fluid mechanics problems
because one is usual?y working only with differences in h or s, not with absolute

values.

In the comparisons between the performance of the different equations of state,
only nitrogen gas is considered. The eight-term expression for c 0 is used in
Jacobsen's formulation, while the value of c¢p0 is taken to be 3.5R for the BB,
VDW, and NBS-NASA equations of state. The value of 3.5R is calculated from equa-
tion (11) by making the accurate assumption that Y = 1.4 for zero-pressure nitrogen
over the temperature range of interest (see ref. 2).

The comparisons of predicted nitrogen-gas thermodynamic properties (z, Y,
and c¢ ) are shown in figures 2, 3, and 4, for a pressure of 5 atm. For all three
propergies, the values predicted by the Jacobsen, BB, and NBS-NASA equations agree
very well, while the values predicted by the VDW equation agree less well, especially
at the lower temperatures. In the United States, Jacobsen's formulation has been
accepted by the National Bureau of Standards as the best general description for
nitrogen, so it is labeled as the standard in the figures. That the VDW equation is
less accurate at the lower temperatures is not surprising because of its simplicity;
however, it does indicate the basic departures from the ideal values.



Although Jacobsen is usually considered the standard by which to compare other
equations, figqures 2, 3, and 4 can be used to estimate the possible uncertainties in
the formulations of Jacobsen, BB, and NBS-NASA. From figure 4, for example, at satu-
ration temperature, there appears to be a difference of about 8 percent in the three
predicted values of c_. The large uncertainty in heat capacities is addressed at
some length in reference 6, which predicts that the heat capacities from the NBS-NASA
equation are accurate to within 2 percent and therefore must be more accurate than
those from the BB or Jacobsen equations. Having not been able in our work to deter-
mine which formulation gives the most accurate heat capacities, we generally consider
the uncertainty in cP to be that due to the total spread in values, or about

8 percent.

The remainder of the comparison between the equations of state involves simula-
tion of an isentropic expansion to a Mach number M of 1.5. The data are presented
in a fashion similar to that of reference 8; the expansion ratios, for example p/p,.,
from the real-gas prediction are divided by their ideal diatomic gas values. The
predictions of pressure, temperature, and density ratios are shown in figure 5 for a
total pressure p, of 9 atm and for total temperatures T, from 300 K down to the
saturation temperature for nitrogen. (An accurate expression for the vapor-pressure
curve is given in ref. 2; a good approximation is given in ref. 9.) Once again, the
VDW equation does not agree very well with the other three equations. &An interesting
observation in figure 5 is the good agreement between the BB and the Jacobsen formu-
lations. The maximum differences over the temperature range between the ratios from
the BB and the Jacobsen formulations are 0.03 percent for the pressure ratio,

0.02 percent for the temperature ratio, and 0.14 percent for the density ratio, the
only difference of any magnitude. Consequently, the BB formulation should be an
excellent approximation to the very complex Jacobsen formulation over the temperature
and pressure ranges of interest for cryogenic wind tunnels. Wagner and Schmidt also
reached the same conclusion in reference 10. The new NBS-NASA equation, however,
does not compare as well with the Jacobsen equation. The maximum differences between
the ratios from the NBS-NASA and Jacobsen equations are 0.11 percent for pressure
ratio, 0.41 percent for temperature ratio, and 0.13 percent for density ratio. The
NBS-NASA equation predicts noticeably smaller temperature deviations from ideal.

The BB equation of state appears to be the best choice because it is relatively
simple, only five arbitrary constants, and it compares very favorably with the com-
plete Jacobsen formulation. The BB equation has the advantage over Jacobsen's equa-
tion in wind tunnel data reduction of being a gas—only description of nitrogen.
Consequently, no special arrangements are needed in data reduction if local tempera-
tures fall below the vapor-pressure temperature. The NBS-NASA equation of state may
prove to be a more accurate description of the gas than the Jacobsen or BB equation,
but this is not known yet. While the NBS-NASA equation was derived using sound speed
data unavailable either to Beattie and Bridgeman or to Jacobsen, it is not obvious
that the NBS-NASA equation actually fits this new sound speed data any better than
the previous formulations, as seen in reference 6. Because of this uncertainty and
the added complexity of the NBS-NASA equation, the BB equation is preferred. The VDW
equation is a big improvement over the ideal equation of state but does not seem to
warrant serious attention because the more accurate BB equation can be used almost as

easily.

HYBRID REAL~IDEAL CALCULATIONS

Many investigators have done quick analyses of real-gas effects by substituting
real~-gas values of some parameter such as Y into equations derived on the assump-
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tion of a constant value of Y. While this procedure is perhaps an understandable
first step in studying real-gas effects, it is incorrect because equations such as
that for the pressure ratio in an ideal isentropic expansion,

-/ (Y=1)
2) (13)

L: 1+I;1_M
P, 2

are derived by assuming that the gas is thermally and calorically perfect. If the
gas is not calorically perfect and c_, Cyr and Y are functions of temperature,
then equation (13) simply does not apply. In fact, any predictions of real-gas
effects using real-gas values of parameters substituted into ideal equations are not
only incorrect but can also be very misleading, as can be seen in figure 6, which is
taken from reference 8. Substituting Y = 1.565, the real-gas value of Y at 8 atm
and 120 K, into equation (13) leads to a predicted pressure deviation of about

6 percent at M = 1.4 instead of the 0.7-percent departure in the opposite direction
predicted by the real-gas solution.

REAL-GAS EFFECTS FOR NITROGEN

With the knowledge that the Beattie-Bridgeman (BB) equation of state agrees well
with the Jacobsen formulation, we now focus on the deviation of nitrogen from the
behavior of an ideal diatomic gas for isentropic expansions, normal shocks, boundary
layers, and interactions between shock waves and boundary layers. With the exception
of those for isentropic expansions, the calculations shown are taken from other
reports. Whether the BB or the Jacobsen equation was used depends on the source.

Isentropic Expansions

The examination of isentropic flow expansions is carried out with the BB equa-
tion of state and, as mentioned earlier, with ideal values assumed for the zero-
pressure heat capacities, c¢ 0 ana cvo. The three total pressures considered are
1, 5, and 9 atm; and total temperatures are varied from 300 X to below saturation
temperature. The actual minimum temperatures shown are based on the prediction of
the onset of condensation effects due to homogeneous nucleation as reported by Sivier
in reference 11. These minimum temperatures represent a probable lower temperature
limit, since the flow at any lower temperature would have undergone spontaneous
nucleation and would not be very useful as a test gas. Minimum operating temperature
limits due to the onset of condensation effects are discussed in more detail in
reference 12,

As in a previous section, the real-gas expansion ratios of pressure, tempera-
ture, and density are normalized by the comparable ideal-gas expansion ratio. These
three ratios are shown in figure 7 as a function of total temperature at total pres-
sures of 1, 5, and 9 atm for isentropic expansions to M = 1.5. The pressure ratios
depart from ideal values by about 0.7 percent for 9 atm at the saturation temperature
(labeled "SAT") and by nearly 1 percent at the total temperature corresponding to the
possible onset of homogeneous nucleation (labeled "ONSET"). At the lower pressures
of 5 and 1 atm, the maximum deviations are about 0.6 and 0.2 percent before the onset
of nucleation. Very similar magnitudes at low temperatures are shown for the devia-
tion in temperature ratio in figure 7(b); however, deviations at 300 K approach



0.2 percent for 9 atm and 0.1 percent for 5 atm. The density expansion ratios, shown
in figure 7(c), display behavior somewhat different from the pressure or temperature
ratios. First, at 300 X, deviations at 9.and 5 atm are 0.5 and 0.3 percent, respec-
tively; and second, deviations at the low-temperature boundary do not smoothly
increase with pressure. At the temperatures predicted for the onset of homogeneous
nucleation, density ratio deviations for 1, 5, and 9 atm are, respectively, 0.3, 0.6,
and 0.5 percent.

The deviations from ideal diatomic gas values for isentropic expansions do
not appear to be of a magnitude to be of concern except perhaps at 9 atm below the
saturation temperature. At these conditions, pressure may deviate by as much as
1 percent, and a data correction procedure may be appropriate in conjunction with a
real-gas formulation. A more complete description of the isentropic expansion
process is included in reference 8. Since the Jacobsen formulation treats nitrogen
as a liguid at temperatures below the vapor-pressure curve, the study in reference 8
was limited to temperatures above saturation.

Normal Shocks

For normal shocks, ratios of various quantities across the shock are normalized
by the ratios for an ideal diatomic gas. The results are taken from reference 8,
which used the Jacobsen formulation, and are calculated down to the appropriate
saturation temperature. Upstream and downstream quantities are subscripted by 1

and 2, respectively.

The differences in the ratios of static pressure, temperature, and density
across the normal shock are shown in figure 8 for an upstream total pressure of
8 atm, upstream total temperatures from 300 K down to saturation temperature, and
upstream Mach numbers of 1.4, 1.7, and 2.0. (Ref. 8 includes further figures showing
that the effects of pressure are roughly proportional to the operating pressure. In
other words, effects at 4 atm would be approximately half of those shown in the
present example of 8 atm.) As seen in figure 8(a), the greatest deviation in pres-
sure ratio between real and ideal flow, a value of about 0.6 percent at saturation
temperature, occurs at M, = 1.7. The deviations in static-temperature ratio
(fig. 8(b)) reach about 0.5 percent at M1 = 2.0, and deviations in static-~density
ratios (fig._8(c)) reach a maximum of about 0.4 percent at 250 K for M, = 2.0.

The ratios of total pressure, temperature, and density across the normal shock
are shown in figure 9 for the same upstream Mach numbers and a total pressure of
8 atm. A maximum deviation of 0.2 percent in the total-pressure ratio occurs

at about 275 K for M1 = 2.0, The maximum total-temperature-ratio deviation is about
1.4 percent at saturation temperature for M, = 2.0. A maximum deviation in total-
density ratio of about 0.3 percent occurs near room temperature for My = 2.0.

The last figure in this series, figure 10, shows the ratio of the real to the
ideal downstream Mach number M as a function of total temperature for an upstream
Mach number M, of 2.0 and a total pressure of 10 atm. The maximum departure from
the ideal value is only 0.1 percent for this severe high-pressure case.

Cryogenic nitrogen gas appears to adequately simulate ideal diatomic normal
shock flow. Deviations in the static-pressure ratio reach 0.6 percent at the satura-
tion temperature for a total pressure of 8 atm. If operation at 9 atm and 10 K
below saturation (corresponding to the predicted onset of homogeneous nucleation) is
desired, this deviation could increase to about 0.9 percent. The departures in
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static temperature are of the same magnitude as those for pressure, while departures
in static density appear to be less. The departures of the ratios of total pressure
and density are not significant, but there are relatively large deviations in the
ratio of total temperatures. A deviation in this quantity is not considered signif-
icant for most data of transonic interest because heat transfer is not normally
significant. None of the above differences appear to influence the downstream value
of Mach number.

An additional comment should be made before leaving normal shock flows. In
showing real-gas effects for shock flows, some authors have chosen to calculate

P - P, .
% Difference = 2,real 2,ideal 100 (14)

P5,ideal

for given static values of upstream pressure P4 and temperature T,. The problem
with this approach is that by specifying o and T, for both the ideal and

the real case, very different values of p are required because of the compress-
ibility 2Z of nitrogen shown in figure 2. TFor example, for upstream static
conditions of 5 atm and 120 K, figure 2 implies a difference in density p of

6 percent between the ideal-gas value and the Jacobsen value. Consequently, even if
the p2/p ratios for the ideal and real shock flows were identical, equation (14)
would stiil suggest a difference of 6 percent. Instead of being an indicator of the
real-gas behavior of nitrogen through a shock, equations like (14) may be showing
only the influence of a parameter such as compressibility.

Boundary Layers on Flat Plates

The next major flow process discussed is boundary-layer simulation over a flat
plate. This section draws from work in reference 13 that utilized the Jacobsen for-
mulation for the equation of state. As discussed in reference 13, in boundary-layer
calculations, not only is the equation of state important, but also the expression
for viscosity. The expression for the viscosity of nitrogen used in this analysis
comes from reference 5 and includes a total of nine constants in a low-density term
and seven additional constants in what is called a dense-~fluid contribution.

(The equation and accompanying constants are also described and discussed in ref. 8.)
The real-gas parameters to be examined in this section include boundary-layer
displacement thickness 8%, boundary-layer thickness 6§, skin friction coefficient
Cf, and boundary-layer momentum thickness 6, for laminar and turbulent adiabatic-
wall boundary layers. Also shown are the real-to-ideal ratios for quantities inside
the boundary layer such as T, h, ht' and pP.

The parameters §*, &, Cg, and 8 for laminar adiabatic-wall boundary layers
on a flat plate are summarized in figure 11 where they are shown normalized by values
calculated for an ideal diatomic gas at 1 atm and 300 K with viscosity represented
by sutherland's formula.. Figure 11(a) shows these parameters as a function of total
pressure, and, surprisingly, the maximum deviation in 8* from the ideal value
occurs at the lowest total pressure. This unexpected result, explained in detail in
reference 13, is caused by two compensating effects: the real-gas imperfections of
nitrogen and the change with increasing pressure in the slope of viscosity as a func-
tion of temperature. (This observation was made earlier by Wagner and Schmidt in
ref. 10.) The same four parameters are shown as a function of free-stream Mach num-

11



ber M_ in figure 11(b). Real-gas effects generally increase with increasing M_.
The deviation for 6% is about 1.3 percent for M_ = 2.0, p. = 9 atm, and

T = 150 K. Similar trends are found in figure 12 for turbulent adiabatic-wall
boundary layers on a flat plate except that the magnitudes of the deviations are gen-
erally less than those for laminar boundary layers. (An assumption is made in the
turbulent calculations that the turbulence model remains valid over the temperature
range. As shown later, this appears to be a good assumption.)

Next, ratios of quantities inside the boundary layer are summarized for both
laminar and turbulent boundary-layer profiles. The results for the laminar boundary
layer are shown in figure 13(a). The velocity ratio is not shown because the agree-
ment is so good that the ratio does not differ from the value of 1.0 to the scale of
this plot. The only large deviation, 2 percent, occurs for static temperature but
does not appear to be of consequence according to reference 13, since the primary
boundary-layer quantities such as 6%, 3§, Cgr 9, and velocity are not affected.
The similar plot for the turbulent boundary layer is shown in figure 13(b). The
agreement here is generally better than in the laminar case except for the tempera-
ture ratio. In this figure, velocity and total enthalpy are not plotted because of
their excellent agreement with ideal values. BAgain, no significance was attached to
the temperature differences.

Although the flat-plate analysis found little reason for concern about adequate
boundary-layer simulation, the differences between the predicted adiabatic-wall tem-
peratures for cryogenic nitrogen and those for an ideal diatomic gas appeared to be
large enough to be verifiable by experiment. Consequently, a two-~dimensional airfoil
instrumented with thermocouples for measuring surface temperature was tested in the
Langley 0.3-Meter Transonic Cryogenic Tunnel (ref. 14). A sample of the results is
given in figure 14. At 299 K, the wall temperatures are essentially those antici-
pated for the ideal gas. However, as the total temperature is reduced, the wall
temperatures are lower than those for the ideal gas, as would be expected from the
temperature profiles shown in figure 13. The magnitude of the adiabatic-wall
temperature decrease is well predicted by the theory; this agreement adds greatly to
the confidence level in this theoretical boundary-layer analysis and particularly
to the applicability of the turbulence model used in reference 13 to cryogenic
temperatures.

Interactions Between Shock Waves and Boundary Layers

In this section the real-gas behavior of nitrogen in an interaction between a
shock wave and a laminar boundary layer is analyzed. The results presented have
been calculated by Wagner and Schmidt in reference 10 using the BB equation of state
for nitrogen and a numerical program with a fine mesh description of the boundary-~
layer region and a coarse mesh description of the outer inviscid flow field. As a
demonstration of the accuracy of the program, results from the ideal equation of
state are compared with experimental data of Hakkinen et al. (ref. 15) in figures 15
and 16 for an incident shock angle § of 32.6°. Wagner and Schmidt then make real-
gas calculations for upstream static conditions of p_ = 1 bar and T, = 78 K,
where 1 bar = 0.987 atm. The static conditions are at the saturation temperature
for nitrogen and correspond to total conditions of 7.7 atm and 140 XK. As shown in
figure 15, the magnitude of differences between the ideal and real values of p/P,,
is less than 0.4 percent and would seem to be quite acceptable given the total condi-
tions of 7.7 atm and 140 K. It is interesting to note, as Wagner and Schmidt do,
that the real-gas deviations of pressure in the boundary layers (shown by the shaded
area) correspond to the deviations of static pressure in the outer inviscid flow
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(shown by the dashed line). The skin friction coefficient and the calculated differ-
ences between real- and ideal-gas values are shown in figure 16. The maximum dif-
ferences in skin friction coefficient seem to be on the order of 5 percent, although
it is not clear how much is due to numerical error. (Further work on skin friction
may be desirable.) Given the good pressure agreement and fair agreement in skin
friction coefficient, this flow process should not pose a problem for testing in
cryogenic nitrogen.

Summary of Nitrogen Analysis

The study of cryogenic nitrogen as a wind tunnel test gas has indicated the
following results. As shown by both the isentropic expansion analyses and the normal
shock analyses, pressure ratios depart from ideal diatomic gas behavior by more than
0.5 percent only at pressures greater than 5 atm combined with temperatures near or
below saturation. With a total pressure of 9 atm and total temperatures below satu-
ration, the pressure ratios may be in error by about 1 percent. If accuracy greater
than this is required, either temperatures below saturation must be avoided at high
pressures or procedures must be devised to correct the data. The boundary-layer
analyses also show effects in displacement thickness as large as 1.3 percent for
Py = 9 atm and M = 2,0. At low temperatures and high pressures, the Reynolds num-
ber should be very large, and the size of boundary layers about test models should
be small compared with the thickness of the model. Consequently, the change in dis-
placement thickness of 1.3 percent may not significantly affect the data because of
the small size of the original boundary layer. The difference of 2 percent in tem-
perature profile through the boundary layer does not seem to affect other quantities
and is not considered significant. Wagner and Schmidt's analysis of interactions
between shock waves and laminar boundary layers shows possible differences in Ce of
about 5 percent. Because there is uncertainty in the magnitude of numerical scatter
in their calculation, further analysis may be worthwhile.

ALTERNATIVE CRYOGENIC GASES

- Although nitrogen is normally used as a test gas for transonic cryogenic tun-
nels, other gases are either being used or being considered as alternatives to
nitrogen. In cryogenic blowdown facilities such as those of McDonnell-Douglas in
California, dry air is cooled to cryogenic temperatures by injecting an almost equal
mass of liquid nitrogen; consequently, the test gas is a mixture of dry air and
nitrogen. To approximate the behavior of this mixture, an isentropic expansion and
a normal shock were modeled by the Beattie-Bridgeman (BB) eguation of state with
appropriate constants for air. (The actual behavior of the mixture of dry air and
nitrogen would be expected to be between the individual behavior of the two.)
Further interest has also surfaced from time to time in using gases that have
significantly lower liquefaction temperatures than nitrogen in order to test at
larger unit Reynolds number. Helium and hydrogen are considered because at 1 atm,
helium boils at 4.3 K and hydrogen at 20.4 K. Helium is also examined using the BB
equation of state, but because of some thermodynamic anomalies to be explained later,
hydrogen requires additional attention.

Air

The first alternative gas to be discussed is dry air. Since air is approxi-
mately 80 percent nitrogen, air and pure nitrogen would be expected to have very
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similar properties. To see whether this is true or not, the isentropic expansion and
normal shock ratios of pressure, temperature, and density have been evaluated for air
and normalized by the ideal diatomic gas values (Z = 1.0 and Y = 1.4), as in fig-
ures 7 and 8. The constants used in the BB equation of state for air, found in
reference 4, are given below in SI units:

A, = 157.16 N-m?/kg?
a = 0.0006666 m3/kg
B, = 0.001592 m’/kg

b = -0.0003801 m3/kg

c = 1498 m3-K3/kg

(These constants were in error in ref. 16.) The specific gas constant R is taken
as 287.07 J/kg-K. The corresponding graphs for isentropic expansions in air are
shown in figure 17, where the values are plotted from 300 K down to saturation tem-
perature. As can be seen by comparing the pressure ratios in figures 17 and 7, there
are virtually no differences between the real-gas performance of nitrogen and of

air. Similarly, there are only small differences between the temperature and den-
sity ratios for nitrogen and air. The air results are plotted only down to satura-
tion temperatures because, as explained in reference 12, air is not expected to
undergo much cooling below saturation before the onset of condensation effects. The
graphs for normal shock flows in air are shown in figure 18. Again the results for
air are very similar to those for nitrogen in fiqure 8. On the basis of this brief
examination, air would appear to be an acceptable cryogenic test gas. Consequently,
using half air and half evaporated liquid nitrogen in a wind tunnel should present
no difficulties, because the real-gas deviations should be somewhere between those
predicted for pure nitrogen and those predicted for air. (The reason nitrogen is
preferred to air for continuous flow fan-driven tunnels injecting a liquid cryogen
for cooling is the availability of liquid nitrogen, the safety of using liquid
nitrogen over using liquid air, and the lower saturation temperatures associated with
pure nitrogen.)

Helium
As a first candidate for cryogenic operation at temperatures much colder than
are possible for nitrogen, the monatomic gas helium is examined by using the follow-
ing constants from reference 4 in the BB eguation:
A = 137 N-m%/kg?
a = 0.01495 m3/kg

B, = 0.003498 m>/kg
b=0

c = 10 m3-K3/kg

14
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(These constants were in error in ref. 16.) The specific gas constant R is taken
to be 2077.3 J/kg-K. The results of the analysis are shown in figure 19; isentropic
expansion ratios for pressure, temperature, and density normalized by the correspond-
ing ideal diatomic gas ratios are shown as a function of Mach number M for two sets
of total conditions. The first set is a total pressure of 1 atm and a total tempera-
ture of 300 X, at which helium acts like an ideal monatomic gas with Y = 1.67. The
second set is a total pressure of 9 atm and a total temperature of 30 K and should be
indicative of real-gas pressure and temperature effects. (The deviations are pri-
marily due to decreased temperature rather than to increased pressure.) As is easily
seen in all three ratios, the real-gas effects in helium due to increased pressure

or reduced temperature are insignificant compared with the fundamental differences
between monatomic helium with Y = 1.67 and an ideal diatomic gas with Y = 1.40.
The pressure ratio differs from an ideal diatomic value by about 6 percent at

M = 2.0 after passing through a maximum deviation of about 10 percent at M = 1.4.
The temperature and density ratios show maximum deviations of about 23 and 26 percent
at M = 2,0. These deviations from ideal diatomic gas behavior are over an order

of magnitude larger than those calculated for nitrogen or air. In addition, since
the pressure ratio shows a deviation of more than 1 percent at M = 0.3, the useful-
ness of helium as a transonic test gas would have to be seriously questioned,
although there may be applications for helium in very low-speed flow situations that
are often appropriate for industrial aerodynamics.

Hydrogen

Since heljum does not appear to be useful as a transonic test gas, attention may
be turned to hydrogen because of its low boiling temperature compared with nitrogen
and because hydrogen, like air and nitrogen, is a diatomic gas. Hydrogen, however,
is somewhat unusual because it has a nuclear spin anomaly. As explained in refer-
ence 17, the spin can be either parallel (orthohydrogen) or antiparallel (para-
hydrogen). At very low temperatures, an equilibrium mixture of orthohydrogen and
parahydrogen is nearly all parahydrogen. At room temperature and above, the equi-
librium concentrations approach those of so-called "normal" hydrogen, which is
approximately 25 percent parahydrogen and 75 percent orthohydrogen. Furthermore,
the rate of change of the concentrations is so slow at room temperatures and below
that the half-life is measured in days if no catalyst is present. Consequently, it
would be unlikely during an experiment that the percentages of orthohydrogen and
parahydrogen would change unless a catalyst is introduced.

In most cryogenic concepts, the test gas is formed by evaporation from the
liquid state, which for hydrogen would result in gaseous parahydrogen. In refer-
ence 18, Haut analyzed parahydrogen by using a polynomial interpolation equation of
state. The pressure, temperature, and density ratios as calculated in reference 18
for an isentropic expansion to M = 1.0 are shown in figure 20. As is readily
apparent, parahydrogen does not appear to simulate ideal diatomic flow. At low tem-
peratures, the deviations in pressure ratio are approximately 8 percent, the devia-
tions in temperature ratio are about 10 percent, and the deviations in density ratio
are somewhat less, about 4 percent.

Rather than cooling the tunnel through injection of the test gas in the liquid
state, one might use a heat exchanger to cool normal hydrogen (n-hydrogen) from
ambient to cryogenic temperatures; then an analysis of the low-temperature behavior
may be made with the BB constants for hydrogen from reference 4:
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A, = 4924 N-n?/kg? g
a = -0.00251 m>/kg

B, = 0.01040 m>/kg

b = -0.02162 m3/kg

3

= 250 m3-K>/kg

Q
|

The specific gas constant R is taken to be 4124.3 J/kg-K and values for the zero-
pressure heat capacity can be taken from reference 17. Some uncertainty exists,
however, in choosing the values of zero-pressure heat capacity, since the data used
in determining the BB constants for hydrogen were taken before 1929, which was the
year in which the two forms of hydrogen, parahydrogen and orthohydrogen, were shown
to exist. Consequently, the low-temperature data used by Beattie and Bridgeman would
be for n-hydrogen if the experiments were conducted before the concentrations of
orthohydrogen and parahydrogen could approach their equilibrium values; or they would
be for equilibrium concentration hydrogen (e-~hydrogen) if a catalyst was present or
if the hydrogen was kept cold for a relatively long period of time, hours or perhaps
days. (Of course, the data may apply to some combination of e~ and n-~hydrogen.)
Assuming that the BB constants are appropriate for n-hydrogen and using the corre-
sponding n-hydrogen values for zero-pressure heat capacity, one obtains the behavior
of n-hydrogen as represented in figure 21. If the assumption that the BB equation
applies to n-hydrogen is correct, then n-hydrogen would not be very useful as a
transonic test gas at cryogenic temperatures because of the large differences between
the predicted ratios of static pressure, temperature, and density and those of an
ideal diatomic gas. Assuming that the BB constants are appropriate for e-hydrogen
and using the equilibrium values of zero-pressure heat capacity from reference 17,
one obtains the behavior of e-~hydrogen as shown in figure 22. If indeed the BB
equation applies to e~hydrogen, then the magnitude of the differences between an
ideal diatomic gas is smaller than for the assumed n-hydrogen example. However, it
must be remembered that the molecular weight of hydrogen is much smaller than

that of nitrogen and that this significantly reduces the Reynolds number. According
to reference 19, the total temperature of hydrogen must be below 40 K before any
Reynolds number advantage over nitrogen at the same pressure occurs. The 20-percent
increase in Reynolds number (ref. 19) realized by using e-hydrogen at T, = 35 K,
where differences seem to be minimal, would not appear to be worthwhile, considering
the safety risks of using hydrogen that are mentioned in reference 18.

CONCLUDING REMARKS

In transonic cryogenic wind tunnels, the test gas, usually nitrogen, must simu-
late an ideal diatomic gas, since transonic flight vehicles normally operate at con-
ditiong for which the atmosphere behaves as an ideal diatomic gas. It is necessary
to be aware that at low temperatures, the behavior of nitrogen, as well as of other
possible test gases, departs from ideal values for thermodynamic properties such as
compressibility 2 and ratio of specific heats Y. However, as shown in this paper
and in several references, the deviations in 2 and Y do not necessarily diminish
the ability of nitrogen to simulate flow of an ideal diatomic gas with 2 = 1.0
and Y = 1.4. To examine the simulation qualities of nitrogen, a complete real-gas
analysis must be done. Substituting real values of Z and Y into ideal
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equations derived with the assumption that Z and Y are constant is incorrect and
can give very misleading indications of real-gas effects. When a complete real-gas
analysis is done for nitrogen, only small differences are seen between nitrogen and
an ideal diatomic gas for isentropic expansions, normal shocks, boundary layers,

and interactions between shock waves and boundary layers. In fact, the only minimum
operating temperature restriction that these real-gas effects may impose occurs at
operating total pressures of about 9 atm, for which the pressure ratio deviations
from ideal are as large as 1 percent if the total temperature is 10 K below satura-
tion. If this deviation is too large, the total temperatures at pressures near

9 atm may have to be restricted to saturation temperature or above for wind tunnel
operatione.

Alternative gases have also been briefly investigated. Air appears to be compa-
rable to nitrogen in simulating an ideal diatomic gas; consequently, minimum operat-
ing temperatures should not be limited by the behavior of gaseous air except, as in
the case of nitrogen, perhaps at total pressures approaching 9 atm and at saturation
temperatures. On the other hand, monatomic helium and the various nuclear forms of
cryogenic hydrogen do not satisfactorily simulate compressible ideal diatomic flow.
In general, they would not make good transonic test gases.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 31, 1981
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Figure 1.- Effect of temperature reduction on
unit Reynolds number and drive power.
Nitrogen gas;

M, = 1.0; py = 1 atm. (From

ref. 1.)
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Figure 2.- Compressibility 2 for nitrogen gas at

p = 5 atm. The Jacobsen curve is taken to be
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Figure 3.- Ratio of specific heats Yy for
nitrogen gas at p = 5 atm. The Jacobsen
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Figure 5.- Isentropic expansion ratios for nitrogen

expanded to M = 1.5

at Py = 9 atm.

Ratios

normalized by those of an ideal diatomic gas.
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Figure 6.- Isentropic expansion pressure ratios for nitrogen
determined by two methods. Ratios normalized by those of an

ideal diatomic gas with Y = 1.4. Py = 8 atm; Tt = 120 XK.
(From ref. 8.)
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Figure 15.~ Pressure distribution for interaction between
shock wave and boundary layer. Reynolds number at shock
intersection with flat plate, 2.96 X 107; M_ = 2.0;
Z = 32.6°. (Reprinted with permission of AIAA from ref. 10.)
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permission of AIAA from ref., 10.) :
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(c) Density.

Figure 17.- Concluded.
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Figure 18.- Static ratios across a normal shock in air for various
upstream Mach numbers M,, calculated using BB equation of
state. Ratios normalized by those of an ideal diatomic gas.

py = 8 atm.

37



38

1
.4
————— T
Lo - 20
1.000
.998
. 996 ] i ! |
100 150 200 250
Tt,l' K

(c) Density.

Figure 18.- Concluded.




1.00
N
h)
\\ t
\ p, . atm Tt . K
.98 | \ —_— 1 300
\\ —_—— 9 30
\
\\
.9 | \
P \
\
Py \ [/
HELIUM [ Y /
I DEAL \ /
\
\ //
92 | \ p
\
\\ /’
\\ 7
90 |- ~e__-”
.88 | | | ] | ] | | | 1
0 .2 4 6 .8 1.0 1.2 1.4 1.6 1.8 2.0

M
(a) Pressure.
Figure 19.- Isentropic expansion ratios for helium as
a function of M, calculated using BB equation of

state. Ratios normalized by those of an ideal
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Figure 19.- Continued.
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Figure 20.- Isentropic expansion ratios for parahydrogen expanded

to M=

1.0.

gas. (From ref. 18.)
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Figure 21.~ Isentropic expansion ratios for n-hydrogen
expanded to M = 1.0 assuming that BB equation of
state applies and using n-hydrogen values for «c_0
Ratios normalized by those of an ideal diatomic gaé.
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Figure 21.- Concluded.
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Figure 22.- Isentropic expansion ratios for e-hydrogen
expanded to M = 1.0 assuming that BB equation of
state applies and using e-hydrogen values for ¢ O
Ratios normalized by those of an ideal diatomic gaé.
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