389 research outputs found
Non-Fermi-Liquid Specific Heat of Normal Degenerate Quark Matter
We compute the low-temperature behavior of the specific heat of normal
(non-color-superconducting) degenerate quark matter as well as that of an
ultradegenerate electron gas. Long-range magnetic interactions lead to
non-Fermi-liquid behavior with an anomalous leading term.
Depending on the thermodynamic potential used as starting point, this effect
appears as a consequence of the logarithmic singularity in the fermion
self-energy at the Fermi surface or directly as a contribution from the only
weakly screened quasistatic magnetic gauge bosons. We show that a calculation
of Boyanovsky and de Vega claiming the absence of a leading term
missed it by omitting vector boson contributions to the internal energy. Using
a formulation which collects all nonanalytic contributions in bosonic ring
diagrams, we systematically calculate corrections beyond the well-known
leading-log approximation. The higher-order terms of the low-temperature
expansion turn out to also involve fractional powers and we
explicitly determine their coefficients up to and including order as
well as the subsequent logarithmically enhanced term . We derive
also a hard-dense-loop resummed expression which contains the infinite series
of anomalous terms to leading order in the coupling and which we evaluate
numerically. At low temperatures, the resulting deviation of the specific heat
from its value in naive perturbation theory is significant in the case of
strongly coupled normal quark matter and thus of potential relevance for the
cooling rates of (proto-)neutron stars with a quark matter component.Comment: REVTEX, 26 pages, 5 postscript figures. v3: new chapter added which
performs a complete hard-dense-loop resummation, covering the infinite series
of anomalous terms and extending the range of applicability to all T << m
A nonequilibrium renormalization group approach to turbulent reheating
We use nonequilibrium renormalization group (RG) techniques to analyze the
thermalization process in quantum field theory, and by extension reheating
after inflation. Even if at a high scale the theory is described by a
non-dissipative theory, the RG running induces nontrivial
noise and dissipation. For long wavelength, slowly varying field
configurations, the noise and dissipation are white and ohmic, respectively.
The theory will then tend to thermalize to an effective temperature given by
the fluctuation-dissipation theorem.Comment: 8 pages, 2 figures; to appear in J. Phys. A; more detailed account of
the calculation of the noise and dissipation kernel
Three-loop HTLpt thermodynamics at finite temperature and chemical potential
In this proceedings we present a state-of-the-art method of calculating
thermodynamic potential at finite temperature and finite chemical potential,
using Hard Thermal Loop perturbation theory (HTLpt) up to
next-to-next-leading-order (NNLO). The resulting thermodynamic potential
enables us to evaluate different thermodynamic quantities including pressure
and various quark number susceptibilities (QNS). Comparison between our
analytic results for those thermodynamic quantities with the available lattice
data shows a good agreement.Comment: 5 pages, 6 figures, conference proceedings of XXI DAE-BRNS HEP
Symposium, IIT Guwahati, December 2014; to appear in 'Springer Proceedings in
Physics Series
The economic and innovation contribution of universities: a regional perspective
Universities and other higher education institutions (HEIs) have come to be regarded as key sources of knowledge utilisable in the pursuit of economic growth. Although there have been numerous studies assessing the economic and innovation impact of HEIs, there has been little systematic analysis of differences in the relative contribution of HEIs across regions. This paper provides an exploration of some of these differences in the context of the UK’s regions. Significant differences are found in the wealth generated by universities according to regional location and type of institution. Universities in more competitive regions are generally more productive than those located in less competitive regions. Also, traditional universities are generally more productive than their newer counterparts, with university productivity positively related to knowledge commercialisation capabilities. Weaker regions tend to be more dependent on their universities for income and innovation, but often these universities under-perform in comparison to counterpart institutions in more competitive regions. It is argued that uncompetitive regions lack the additional knowledge infrastructure, besides universities, that are more commonly a feature of more competitive regions
Advances in perturbative thermal field theory
The progress of the last decade in perturbative quantum field theory at high
temperature and density made possible by the use of effective field theories
and hard-thermal/dense-loop resummations in ultrarelativistic gauge theories is
reviewed. The relevant methods are discussed in field theoretical models from
simple scalar theories to non-Abelian gauge theories including gravity. In the
simpler models, the aim is to give a pedagogical account of some of the
relevant problems and their resolution, while in the more complicated but also
more interesting models such as quantum chromodynamics, a summary of the
results obtained so far are given together with references to a few most recent
developments and open problems.Comment: 84 pages, 18 figues, review article submitted to Reports on Progress
in Physics; v2, v3: minor additions and corrections, more reference
Perturbative and Nonperturbative Kolmogorov Turbulence in a Gluon Plasma
In numerical simulations of nonabelian plasma instabilities in the hard-loop
approximation, a turbulent spectrum has been observed that is characterized by
a phase-space density of particles with exponent , which is larger than expected from relativistic
scatterings. Using the approach of Zakharov, L'vov and Falkovich, we analyse
possible Kolmogorov coefficients for relativistic -particle
processes, which give at most perturbatively for an energy cascade.
We discuss nonperturbative scenarios which lead to larger values. As an extreme
limit we find the result generically in an inherently nonperturbative
effective field theory situation, which coincides with results obtained by
Berges et al.\ in large- scalar field theory. If we instead assume that
scaling behavior is determined by Schwinger-Dyson resummations such that the
different scaling of bare and dressed vertices matters, we find that
intermediate values are possible. We present one simple scenario which would
single out .Comment: published versio
The pressure of hot QCD up to g^6 ln(1/g)
The free energy density, or pressure, of QCD has at high temperatures an
expansion in the coupling constant g, known so far up to order g^5. We compute
here the last contribution which can be determined perturbatively, g^6 ln(1/g),
by summing together results for the 4-loop vacuum energy densities of two
different three-dimensional effective field theories. We also demonstrate that
the inclusion of the new perturbative g^6 ln(1/g) terms, once they are summed
together with the so far unknown perturbative and non-perturbative g^6 terms,
could potentially extend the applicability of the coupling constant series down
to surprisingly low temperatures.Comment: 18 pages. Small clarifications added. To appear in Phys.Rev.
Thermodynamics of Large-N_f QCD at Finite Chemical Potential
We extend the previously obtained results for the thermodynamic potential of
hot QCD in the limit of large number of fermions to non-vanishing chemical
potential. We give exact results for the thermal pressure in the entire range
of temperature and chemical potential for which the presence of a Landau pole
is negligible numerically. In addition we compute linear and non-linear quark
susceptibilities at zero chemical potential, and the entropy at small
temperatures. We compare with the available perturbative results and determine
their range of applicability. Our numerical accuracy is sufficiently high to
check and verify existing results, including the recent perturbative results by
Vuorinen on quark number susceptibilities and the older results by Freedman and
McLerran on the pressure at zero temperature and high chemical potential. We
also obtain a number of perturbative coefficients at sixth order in the
coupling that have not yet been calculated analytically. In the case of both
non-zero temperature and non-zero chemical potential, we investigate the range
of validity of a scaling behaviour noticed recently in lattice calculations by
Fodor, Katz, and Szabo at moderately large chemical potential and find that it
breaks down rather abruptly at , which points to a
presumably generic obstruction for extrapolating data from small to large
chemical potential. At sufficiently small temperatures , we find
dominating non-Fermi-liquid contributions to the interaction part of the
entropy, which exhibits strong nonlinearity in the temperature and an excess
over the free-theory value.Comment: 18 pages, 7 figures, JHEP style; v2: several updates, rewritten and
extended sect. 3.4 covering now "Entropy at small temperatures and
non-Fermi-liquid behaviour"; v3: additional remarks at the end of sect. 3.4;
v4: minor corrections and additions (version to appear in JHEP
Recommended from our members
Genetically Determined Plasma Lipid Levels and Risk of Diabetic Retinopathy: A Mendelian Randomization Study.
Results from observational studies examining dyslipidemia as a risk factor for diabetic retinopathy (DR) have been inconsistent. We evaluated the causal relationship between plasma lipids and DR using a Mendelian randomization approach. We pooled genome-wide association studies summary statistics from 18 studies for two DR phenotypes: any DR (N = 2,969 case and 4,096 control subjects) and severe DR (N = 1,277 case and 3,980 control subjects). Previously identified lipid-associated single nucleotide polymorphisms served as instrumental variables. Meta-analysis to combine the Mendelian randomization estimates from different cohorts was conducted. There was no statistically significant change in odds ratios of having any DR or severe DR for any of the lipid fractions in the primary analysis that used single nucleotide polymorphisms that did not have a pleiotropic effect on another lipid fraction. Similarly, there was no significant association in the Caucasian and Chinese subgroup analyses. This study did not show evidence of a causal role of the four lipid fractions on DR. However, the study had limited power to detect odds ratios less than 1.23 per SD in genetically induced increase in plasma lipid levels, thus we cannot exclude that causal relationships with more modest effect sizes exist
Three-loop HTL QCD thermodynamics
The hard-thermal-loop perturbation theory (HTLpt) framework is used to
calculate the thermodynamic functions of a quark-gluon plasma to three-loop
order. This is the highest order accessible by finite temperature perturbation
theory applied to a non-Abelian gauge theory before the high-temperature
infrared catastrophe. All ultraviolet divergences are eliminated by
renormalization of the vacuum, the HTL mass parameters, and the strong coupling
constant. After choosing a prescription for the mass parameters, the three-loop
results for the pressure and trace anomaly are found to be in very good
agreement with recent lattice data down to , which are
temperatures accessible by current and forthcoming heavy-ion collision
experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE
- …
