85 research outputs found

    Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay

    Get PDF
    Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications

    Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane

    Get PDF
    In this work, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N′-methylene bis(acrylamide) (MBAAm) as cross-linker are used for the synthesis of nanoparticles. As far as our knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles via DPP. The newly synthesized nanoparticles were further employed for the surface modification of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane exhibited the improved permeability (56 L/ m2 h bar) and dye removal (>98% of Reactive Black 5 and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared membrane can have potential application in textile and industrial wastewater treatment

    Low-cost inorganic cation exchange membrane for electrodialysis: optimum processing temperature for the cation exchanger

    Full text link
    The optimum temperature for fixing zirconium phosphate, obtained by precipitation, on a low-cost ceramic support was determined in order to obtain an inorganic cation exchange membrane for electrodialysis. Zirconium phosphate ion exchange capacity maximised between 450 and 550°C, thus it was considered the optimum processing temperature. The origin of this maximum was investigated by means of X-ray diffraction and termogravimetry and evolved gas analysis. Zirconium phosphate formation by precipitation in the porous network of the support was verified by scanning electron microscopy and energy dispersive X-ray analysis and mercury intrusion porosimetry. The membrane obtained after thermal treatment at 450°C displayed selectivity to the cations present in the spent rinse water of the chromium plating process. This property allows the recovery of chromium by removing the cations through the cation exchange ceramic membrane.The authors wish to express their gratitude to the Spanish Ministry of Science and Innovation for the support given to the research study (National Basic Research Programme, Ref. CTQ2008-06750-C02-02), as well as for the FPU student grant awarded to one of the authors (Ref.: AP2009-4409).Mestre, S.; Sales, S.; Palacios, M.; Lorente, M.; Mallol, G.; Pérez-Herranz, V. (2013). Low-cost inorganic cation exchange membrane for electrodialysis: optimum processing temperature for the cation exchanger. Desalination and Water Treatment. 51(16-18):3317-3324. https://doi.org/10.1080/19443994.2012.749177S331733245116-18Strathmann, H. (2010). Electromembrane Processes: Basic Aspects and Applications. Comprehensive Membrane Science and Engineering, 391-429. doi:10.1016/b978-0-08-093250-7.00048-7Drioli, E., & Fontananova, E. (s. f.). Integrated Membrane Processes. Membrane Operations, 265-283. doi:10.1002/9783527626779.ch12Strathmann, H. (s. f.). Fundamentals in Electromembrane Separation Processes. Membrane Operations, 83-119. doi:10.1002/9783527626779.ch5Alberti, G., Casciola, M., Costantino, U., & Levi, G. (1978). Inorganic ion exchange membranes consisting of microcrystals of zirconium phosphate supported by Kynar®. Journal of Membrane Science, 3(2), 179-190. doi:10.1016/s0376-7388(00)83021-5Semiat, R., & Hasson, D. (s. f.). Seawater and Brackish-Water Desalination with Membrane Operations. Membrane Operations, 221-243. doi:10.1002/9783527626779.ch10Bregman, J. ., & Braman, R. . (1965). Inorganic ion exchange membranes. Journal of Colloid Science, 20(9), 913-922. doi:10.1016/0095-8522(65)90064-4Bishop, H. K., Bittles, J. A., & Guter, G. A. (1969). Investigation of inorganic ion exchange membranes for electrodialysis. Desalination, 6(3), 369-380. doi:10.1016/s0011-9164(00)80226-xRajan, K. S., Boies, D. B., Casolo, A. J., & Bregman, J. . (1966). Inorganic ion-exchange membranes and their application to electrodialysis. Desalination, 1(3), 231-246. doi:10.1016/s0011-9164(00)80255-6INAMUDDIN, KHAN, S., SIDDIQUI, W., & KHAN, A. (2007). Synthesis, characterization and ion-exchange properties of a new and novel ‘organic–inorganic’ hybrid cation-exchanger: Nylon-6,6, Zr(IV) phosphate. Talanta, 71(2), 841-847. doi:10.1016/j.talanta.2006.05.042HELEN, M., VISWANATHAN, B., & MURTHY, S. (2007). Synthesis and characterization of composite membranes based on α-zirconium phosphate and silicotungstic acid. Journal of Membrane Science, 292(1-2), 98-105. doi:10.1016/j.memsci.2007.01.018Yu.S. Dzyaz’ko, V.N. Belyakov, N.V. Stefanyak, S.L. Vasilyuk, Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide, Russ. J. Appl. Chem. 79 (2006) 769–773.Linkov, V. ., & Belyakov, V. . (2001). Novel ceramic membranes for electrodialysis. Separation and Purification Technology, 25(1-3), 57-63. doi:10.1016/s1383-5866(01)00090-9Linkov, V. M., Dzyaz’ko, Y. S., Belyakov, V. N., & Atamanyuk, V. Y. (2007). Inorganic composite membranes for electrodialytic desaltination. Russian Journal of Applied Chemistry, 80(4), 576-581. doi:10.1134/s1070427207040118El-Sourougy, M. R., Zaki, E. E., & Aly, H. F. (1997). Transport characteristics of ceramic supported zirconium phosphate membrane. Journal of Membrane Science, 126(1), 107-113. doi:10.1016/s0376-7388(96)00273-6Sánchez, E., Mestre, S., Pérez-Herranz, V., & García-Gabaldón, M. (2005). Síntesis de membranas cerámicas para la regeneración de baños de cromado agotados. Boletín de la Sociedad Española de Cerámica y Vidrio, 44(6), 409-414. doi:10.3989/cyv.2005.v44.i6.340Sánchez, E., Mestre, S., Pérez-Herranz, V., Reyes, H., & Añó, E. (2006). Membrane electrochemical reactor for continuous regeneration of spent chromium plating baths. Desalination, 200(1-3), 668-670. doi:10.1016/j.desal.2006.03.475Alberti, G., Casciola, M., Costantino, U., & Vivani, R. (1996). Layered and pillared metal(IV) phosphates and phosphonates. Advanced Materials, 8(4), 291-303. doi:10.1002/adma.19960080405Alberti, G., & Torracca, E. (1968). Crystalline insoluble salts of polybasic metals - II. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation. Journal of Inorganic and Nuclear Chemistry, 30(1), 317-318. doi:10.1016/0022-1902(68)80096-xTrobajo, C., Khainakov, S. A., Espina, A., & García, J. R. (2000). On the Synthesis of α-Zirconium Phosphate. Chemistry of Materials, 12(6), 1787-1790. doi:10.1021/cm0010093Alberti, G. (1978). Syntheses, crystalline structure, and ion-exchange properties of insoluble acid salts of tetravalent metals and their salt forms. Accounts of Chemical Research, 11(4), 163-170. doi:10.1021/ar50124a007Rajeh, A. O., & szirtes, L. (1995). Investigations of crystalline structure of gamma-zirconium phosphate. Journal of Radioanalytical and Nuclear Chemistry Articles, 196(2), 319-322. doi:10.1007/bf02038050Krogh Andersen, A. M., Norby, P., Hanson, J. C., & Vogt, T. (1998). Preparation and Characterization of a New 3-Dimensional Zirconium Hydrogen Phosphate, τ-Zr(HPO4)2. Determination of the Complete Crystal Structure Combining Synchrotron X-ray Single-Crystal Diffraction and Neutron Powder Diffraction. Inorganic Chemistry, 37(5), 876-881. doi:10.1021/ic971060hFeng, Y., He, W., Zhang, X., Jia, X., & Zhao, H. (2007). The preparation of nanoparticle zirconium phosphate. Materials Letters, 61(14-15), 3258-3261. doi:10.1016/j.matlet.2006.11.132Clearfield, A. (2000). INORGANIC ION EXCHANGERS, PAST, PRESENT, AND FUTURE. Solvent Extraction and Ion Exchange, 18(4), 655-678. doi:10.1080/07366290008934702Szirtes, L., Shakshooki, S. K., Szeleczky, A. M., & Rajeh, A. O. (1998). Thermoanalyncal Investigation of Some Layered Zirconium Salts and Their Various Derivatives I. Journal of Thermal Analysis and Calorimetry, 51(2), 503-515. doi:10.1007/bf03340188Al-Othman, A., Tremblay, A. Y., Pell, W., Letaief, S., Burchell, T. J., Peppley, B. A., & Ternan, M. (2010). Zirconium phosphate as the proton conducting material in direct hydrocarbon polymer electrolyte membrane fuel cells operating above the boiling point of water. Journal of Power Sources, 195(9), 2520-2525. doi:10.1016/j.jpowsour.2009.11.052Thakkar, R., Patel, H., & Chudasama, U. (2007). A comparative study of proton transport properties of zirconium phosphate and its metal exchanged phases. Bulletin of Materials Science, 30(3), 205-209. doi:10.1007/s12034-007-0036-3Jiang, P., Pan, B., Pan, B., Zhang, W., & Zhang, Q. (2008). A comparative study on lead sorption by amorphous and crystalline zirconium phosphates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1-3), 108-112. doi:10.1016/j.colsurfa.2008.02.035García-Gabaldón, M., Pérez-Herranz, V., García-Antón, J., & Guiñón, J. L. (2009). Use of ion-exchange membranes for the removal of tin from spent activating solutions. Desalination and Water Treatment, 3(1-3), 150-156. doi:10.5004/dwt.2009.453García-Gabaldón, M., Pérez-Herranz, V., García-Antón, J., & Guiñón, J. L. (2009). Effect of hydrochloric acid on the transport properties of tin through ion-exchange membranes. Desalination and Water Treatment, 10(1-3), 73-79. doi:10.5004/dwt.2009.69

    Conversion of Carbon Dioxide into Hydrocarbons Vol. 2 Technology

    No full text
    International audienceThis book presents chemical and biological methods to convert carbon dioxide into various products such as methanol, ethanol, formic acid, formaldehyde, volatile organic compounds, syngas and polymers

    Conversion of Carbon Dioxide into Hydrocarbons Vol. 1 Catalysis

    No full text
    International audienceThis book presents the catalytic conversion of carbon dioxide into various hydrocarbons and other products using photochemical, electrochemical and thermo-chemical processes. Products include formate, formic acid, alcohols, lower and higher hydrocarbons, gases such as hydrogen, carbon monoxide and syngas

    Nanophotocatalysis and Environmental Applications

    No full text
    International audienceThis book will be a guiding path to understand the photocatalytic process and mechanism for the deterioration of heavy metals, persistent organic pollutants and pathogens from wastewater. Environmental remediation is of crucial importance in the context of human sustainability in the present and future times. The unplanned anthropogenic activities and revolutionary industrialization end up in environmental contamination with noxious organic-inorganic and biogenic pollutants. The photocatalytic disinfection and detoxification is the only solution to preserve and restore the ecological balance. The main emphasis is to explore and enhance the photocatalytic potentials of solar active-materials

    Methods for Bioremediation of Water and Wastewater Pollution

    No full text
    International audienceThis book presents advanced techniques for wastewater treatment and the chapters review the environmental impact of water pollution, the analysis of water quality, and technologies for the preservation of water resources. Also outlined in this volume is the bioremediation of heavy metals, dyes, bisphenols, phthalates, cyanobacteria in contaminated water and wastewater. Another focus of this book is the use of natural remediation techniques such as bacterial biofilms and enzymes

    Soft actuator based on Kraton with GO/Ag/Pani composite electrodes for robotic applications

    No full text
    In this work, electrochemically-driven Kraton/graphene oxide/Ag/polyaniline (Kraton/GO/Ag/Pani) polymer composite based ionic polymer metal composite (IPMC) was fabricated as a soft actuator. Silver nanopowder with polyaniline coating used as an electrode material is a novel approach in the fabrication of IPMC, which gives new opportunities for development of the electrode on ionic polymer actuator surfaces directly without electroless plating of Pt or Au metal. The Kraton/GO/Ag/Pani membrane showed much higher water-uptake (WU), ion exchange capacity (IEC), proton conductivity than those of several reported IPMC membranes. The enhanced actuation performance indicates that the Kraton/GO/Ag/Pani is a better alternative to the highly expensive commercialized IPMC actuator

    Industrial Applications of Green Solvents

    No full text
    Green chemistry aims at reducing pollution and avoiding hazardous waste in the environment, as well as in a number of industrial applications, including chemical, pharmaceutical, paint and leather industries. The book focuses on new applications of green solvents (water, ionic liquids, supercritical carbon dioxide, terpenes) in such areas as chemical synthesis (including lipase-catalyzed reactions, organic synthesis, esterification reactions), gas separation membranes, environment-friendly products, low energy requirement processes and alternatives to hazardous substances."Зеленая химия" направлена на снижение загрязнения и предотвращение образования опасных отходов в окружающей среде, а также в ряде отраслей промышленности, включая химическую, фармацевтическую, лакокрасочную и кожевенную промышленность. Книга посвящена новым областям применения экологически чистых растворителей (вода, ионные жидкости, сверхкритический диоксид углерода, терпены) в таких областях, как химический синтез (включая реакции, катализируемые липазой, органический синтез, реакции этерификации), мембраны для разделения газов, экологически чистые продукты, процессы с низким энергопотреблением и альтернативы опасным веществам
    corecore