326 research outputs found

    How variable is mixing efficiency in the abyss?

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47 (2020): e2019GL086813, doi: 10.1029/2019GL086813.Mixing efficiency is an important turbulent flow property in fluid dynamics, whose variability potentially affects the large‐scale ocean circulation. However, there are several confusing definitions. Here we compare and contrast patch‐wise versus bulk estimates of mixing efficiency in the abyss by revisiting data from previous extensive field surveys in the Brazil Basin. Observed patch‐wise efficiency is highly variable over a wide range of turbulence intensity. Bulk efficiency is dominated by rare extreme turbulence events. In the case where enhanced near‐bottom turbulence is thought to be driven by breaking of small‐scale internal tides, the estimated bulk efficiency is 20%, close to the conventional value of 17%. On the other hand, where enhanced near‐bottom turbulence appears to be convectively driven by hydraulic overflows, bulk efficiency is suggested to be as large as 45%, which has implications for a further significant role of overflow mixing on deep‐water mass transformation.TI is a JSPS Overseas Research Fellow. LS, KLP, and JMT acknowledge support from the U.S. National Science Foundation and Office of Naval Research. The authors express their gratitude to Ali Mashayek and an anonymous reviewer for their useful comments on the original manuscript. Data used in this study is available from the Woods Hole Open Access Server (https://hdl.handle.net/1912/25456).2020-09-2

    Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes

    Get PDF
    Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought

    Exploiting inflammation for therapeutic gain in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy associated with <5% 5-year survival, in which standard chemotherapeutics have limited benefit. The disease is associated with significant intra- and peritumoral inflammation and failure of protective immunosurveillance. Indeed, inflammatory signals are implicated in both tumour initiation and tumour progression. The major pathways regulating PDAC-associated inflammation are now being explored. Activation of leukocytes, and upregulation of cytokine and chemokine signalling pathways, both have been shown to modulate PDAC progression. Therefore, targeting inflammatory pathways may be of benefit as part of a multi-target approach to PDAC therapy. This review explores the pathways known to modulate inflammation at different stages of tumour development, drawing conclusions on their potential as therapeutic targets in PDAC

    Epithelial Tissues Have Varying Degrees of Susceptibility to KrasG12D-Initiated Tumorigenesis in a Mouse Model

    Get PDF
    Activating mutations in the Kras gene are commonly found in some but not all epithelial cancers. In order to understand the susceptibility of different epithelial tissues to Kras-induced tumorigenesis, we introduced one of the most common Kras mutations, KrasG12D, broadly in epithelial tissues. We used a mouse model in which the G12D mutation is placed in the endogenous Kras locus controlled by inducible, Cre-mediated recombination in tissues expressing cytokeratin 19 including the oral cavity, GI tract, lungs, and ducts of the liver, kidney, and the pancreas. Introduction of the KrasG12D mutation in adult mouse tissues led to neoplastic changes in some but not all of these tissues. Notably, many hyperplasias, metaplasias and adenomas were observed in the oral cavity, stomach, colon and lungs, suggesting that exposure to products of the outside environment promotes KrasG12D-initiated tumorigenesis. However, environmental exposure did not consistently correlate with tumor formation, such as in the small intestine, suggesting that there are also intrinsic differences in susceptibility to Kras activation. The pancreas developed small numbers of mucinous metaplasias with characteristics of early stage pancreatic intraepithelial neoplasms (PanINs), supporting the hypothesis that pancreatic ducts have the potential to give rise pancreatic cancer

    The Anti-Tumor Effect of HDAC Inhibition in a Human Pancreas Cancer Model Is Significantly Improved by the Simultaneous Inhibition of Cyclooxygenase 2

    Get PDF
    Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients.Peer reviewe

    Disruption of STAT3 signaling promotes KRAS induced lung tumorigenesis

    Get PDF
    STAT3 is considered to play an oncogenic role in several malignancies including lung cancer; consequently, targeting STAT3 is currently proposed as therapeutic intervention. Here we demonstrate that STAT3 plays an unexpected tumour-suppressive role in KRAS mutant lung adenocarcinoma (AC). Indeed, lung tissue-specific inactivation of Stat3 in mice results in increased KrasG12D-driven AC initiation and malignant progression leading to markedly reduced survival. Knockdown of STAT3 in xenografted human AC cells increases tumour growth. Clinically, low STAT3 expression levels correlate with poor survival and advanced malignancy in human lung AC patients with smoking history, which are prone to KRAS mutations. Consistently, KRAS mutant lung tumours exhibit reduced STAT3 levels. Mechanistically, we demonstrate that STAT3 controls NF-B-induced IL-8 expression by sequestering NF-B within the cytoplasm, thereby inhibiting IL-8-mediated myeloid tumour infiltration and tumour vascularization and hence tumour progression. These results elucidate a novel STAT3NF-BIL-8 axis in KRAS mutant AC with therapeutic and prognostic relevance.P 25599(VLID)183891

    Radiation induced CNS toxicity – molecular and cellular mechanisms

    Get PDF
    Radiotherapy of tumours proximal to normal CNS structures is limited by the sensitivity of the normal tissue. Prior to the development of prophylactic strategies or treatment protocols a detailed understanding of the mechanisms of radiation induced CNS toxicity is mandatory. Histological analysis of irradiated CNS specimens defines possible target structures prior to a delineation of cellular and molecular mechanisms. Several lesions can be distinguished: Demyelination, proliferative and degenerative glial reactions, endothelial cell loss and capillary occlusion. All changes are likely to result from complex alterations within several functional CNS compartments. Thus, a single mechanism responsible cannot be separated. At least four factors contribute to the development of CNS toxicity: (1) damage to vessel structures; (2) deletion of oligodendrocyte-2 astrocyte progenitors (O-2A) and mature oligodendrocytes; (3) deletion of neural stem cell populations in the hippocampus, cerebellum and cortex; (4) generalized alterations of cytokine expression. Several underlying cellular and molecular mechanisms involved in radiation induced CNS toxicity have been identified. The article reviews the currently available data on the cellular and molecular basis of radiation induced CNS side effects.   http://www.bjcancer.com © 2001 Cancer Research Campaig

    Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints

    Get PDF
    Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions

    Hypertonic Stress Induces VEGF Production in Human Colon Cancer Cell Line Caco-2: Inhibitory Role of Autocrine PGE2

    Get PDF
    Vascular Endothelial Growth Factor (VEGF) is a major regulator of angiogenesis. VEGF expression is up regulated in response to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular arachidonic acid-derived prostaglandin (PG)E2 are regulators of VEGF expression and angiogenesis in colon cancer. In addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate colon cancer cells and promote PGE2 generation. Such physiological stimulation may provide signaling for cancer promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF production by colon cancer cells. The role of concomitant PGE2 generation and MAPK activation was addressed by specific pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked VEGF and PGE2 production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK pathways. To address the regulatory role of PGE2 on VEGF production, Caco-2 cells were treated with cPLA2 (ATK) and COX-2 (NS-398) inhibitors, that completely block PGE2 generation. The Caco-2 cells were also treated with a non selective PGE2 receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover, addition of PGE2 or selective EP2 receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine inhibitory role for PGE2 appears to be selective to hypertonic environment since VEGF production induced by exposure to CoCl2 was decreased by inhibition of concomitant PGE2 generation. Our results indicated that hypertonicity stimulates VEGF production in colon cancer cell lines. Also PGE2 plays an inhibitory role on VEGF production by Caco-2 cells exposed to hyperosmotic stress through EP2 activation
    corecore