273 research outputs found

    Diffuse interstellar bands {\lambda}5780 and {\lambda}5797 in the Antennae Galaxy as seen by MUSE

    Full text link
    ABRIDGED: Diffuse interstellar bands (DIBs) are faint spectral absorption features of unknown origin. Research on DIBs beyond the Local Group (LG) will surely blossom in the era of the ELTs. A possibility that needs to be explored is the use of integral field spectrographs. We do so by using MUSE data for the Antennae Galaxy, the closest major galaxy merger. High S-to-N spectra were created by co-adding the signal of many spatial elements. The emission of the underlying stellar population was modeled using STARLIGHT. To our knowledge, we have derived the first maps for the DIBs at l5780 and l5797 in galaxies outside the LG. The l5780 DIB was detected in an area of ~0.6 arcmin2, corresponding to a linear scale of ~25 kpc2. This region was sampled using >200 independent lines of sight. The DIB l5797 was detected in >100 independent lines of sight. Both DIBs are associated with a region with high emission in the HI 21 cm line, implying a connection between atomic gas and DIBs, as the correlations for the Milky Way also suggest. Conversely, there is mild spatial association between the two DIBs and the molecular gas, in agreement with results for our Galaxy that indicate a lack of correlation between DIBs and molecular gas. The overall structure for the DIB strength distribution and extinction are comparable. Within the system, the l5780 DIB clearly correlates with the extinction. Both DIBs follow the relationship between equivalent width and reddening when data for several galaxies are considered. Unidentified Infrared emission Bands (UIBs, likely caused by PAHs) and the l5780 and l5797 DIBs show similar but not identical spatial distributions. We attribute the differences to extinction effects without necessarily implying a radically different nature of the respective carriers. The results illustrate the enormous potential of integral field spectrographs for extragalactic DIB research.Comment: 12 pages, 13 figures, accepted by Astronomy & Astrophysics; version corrected by English edito

    Yacimiento paleolítico de las afueras de Burgos en la ribera del Arlanzón

    Get PDF

    HeI in the central Giant HII Region of NGC 5253. A 2D observational approach to collisional and radiative transfer effects

    Full text link
    ABRIDGED: NGC5253 is an ideal laboratory for detailed studies of starburst galaxies. We present for the first time in a starburst galaxy a 2D study of the spatial behavior of collisional and radiative transfer effects in He^+. The HeI lines are analysed based on data obtained with FLAMES and GMOS. Collisional effects are negligible for transitions in the singlet cascade while relatively important for those in the triplet cascade. In particular, they can contribute up to 20% of the flux in the HeIl7065 line. Radiative transfer effects are important over an extended and circular area of 30pc in diameter centered at the Super Star Clusters. HeI abundance, y^+, has been mapped using extinction corrected fluxes of six HeI lines, realistic assumptions for T_e, n_e, and the stellar absorption equivalent width as well as the most recent emissivities. We found a mean of 10^3 y^+ ~80.3 over the mapped area. The relation between the excitation and the total helium abundance, y_tot, is consistent with no abundance gradient. Uncertainties in the derivation of He abundances are dominated by the adopted assumptions. We illustrated the difficulty of detecting a putative He enrichment due to the presence of Wolf-Rayet stars in the main GHIIR. Data are marginally consistent with an excess in the N/He ratio in the N enriched area of the order of both, the atmospheric N/He ratios in WR stars and the uncertainties estimated for the N/He ratios.Comment: Accepted in Astronomy and Astrophysics; the emissivities presented in the Corrigendum, Porter et al. 2013, arXiv:1303.5115, have been include

    p3d: a general data-reduction tool for fiber-fed integral-field spectrographs

    Full text link
    The reduction of integral-field spectrograph (IFS) data is demanding work. Many repetitive operations are required in order to convert raw data into, typically a large number of, spectra. This effort can be markedly simplified through the use of a tool or pipeline, which is designed to complete many of the repetitive operations without human interaction. Here we present our semi-automatic data-reduction tool p3d that is designed to be used with fiber-fed IFSs. Important components of p3d include a novel algorithm for automatic finding and tracing of spectra on the detector, and two methods of optimal spectrum extraction in addition to standard aperture extraction. p3d also provides tools to combine several images, perform wavelength calibration and flat field data. p3d is at the moment configured for four IFSs. In order to evaluate its performance we have tested the different components of the tool. For these tests we used both simulated and observational data. We demonstrate that for three of the IFSs a correction for so-called cross-talk due to overlapping spectra on the detector is required. Without such a correction spectra will be inaccurate, in particular if there is a significant intensity gradient across the object. Our tests showed that p3d is able to produce accurate results. p3d is a highly general and freely available tool. It is easily extended to include improved algorithms, new visualization tools and support for additional instruments. The program code can be downloaded from the p3d-project web site http://p3d.sourceforge.netComment: 18 pages, 15 figures, 3 tables, accepted for publication in A&

    The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE

    Get PDF
    The large field and wavelength range of MUSE is well suited to mapping Galactic planetary nebulae (PN). The bright PN NGC 7009 was observed with MUSE on the VLT during the Science Verification of the instrument in seeing of 0.6". Emission line maps in hydrogen Balmer and Paschen lines were formed from analysis of the MUSE cubes. The measured electron temperature and density from the MUSE cube were employed to predict the theoretical hydrogen line ratios and map the extinction distribution across the nebula. After correction for the interstellar extinction to NGC 7009, the internal dust-to-gas ratio (A_V/N_H) has been mapped for the first time in a PN. The extinction map of NGC 7009 has considerable structure, broadly corresponding to the morphological features of the nebula. A large-scale feature in the extinction map, consisting of a crest and trough, occurs at the rim of the inner shell. The nature of this feature was investigated and instrumental and physical causes considered; no convincing mechanisms were identified to produce this feature, other than mass loss variations in the earlier asymptotic giant branch phase. The dust-to-gas ratio A_V/N_H increases from 0.7 times the interstellar value to >5 times from the centre towards the periphery of the ionized nebula. The integrated A_V/N_H is about 2 times the mean ISM value. It is demonstrated that extinction mapping with MUSE provides a powerful tool for studying the distribution of PN internal dust and the dust-to-gas ratio. (Abridged.)Comment: 10 pages, 7 figures. Accepted by A&

    Towards DIB mapping in galaxies beyond 100 Mpc. A radial profile of the λ\lambda5780.5 diffuse interstellar band in AM 1353-272 B

    Get PDF
    Diffuse Interstellar Bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of Interstellar Medium (ISM). Research of DIBs outside the Milky Way is currently very limited. Specifically spatially resolved investigations of DIBs outside of the Local Group is, to our knowledge, inexistent. Here, we explore the capability of the high sensitivity Integral Field Spectrograph, MUSE, as a tool to map diffuse interstellar bands at distances larger than 100 Mpc. We use MUSE commissioning data for AM 1353-272 B, the member with highest extinction of the "The Dentist's Chair", an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. We derived decreasing radial profiles for the equivalent width of the λ\lambda5780.5 DIB both in the receding and approaching side of the companion galaxy up to distances of \sim4.6 kpc from the center of the galaxy. Likewise, interstellar extinction, as derived from the Halpha/Hbeta line ratio displays a similar trend, with decreasing values towards the external parts. This translates into an intrinsic correlation between the strength of the DIB and the extinction within AM 1353-272 B consistent with the current existing global trend between these quantities when using measurements for both Galactic and extragalactic sight lines. Mapping of DIB strength in the Local Universe as up to now only done for the Milky Way seems feasible. This offers a new approach to study the relationship between DIBs and other characteristics and species of the ISM in different conditions as those found in our Galaxy to the use of galaxies in the Local Group and/or single sightlines towards supernovae, quasars and galaxies outside the Local Group.Comment: 4 pages, 4 figures, accepted for publication as a Letter in Astronomy and Astrophysics; Received 10 February 2015 / Accepted 20 February 2015 ; English corrections include

    Integral Field Spectroscopy based H\alpha\ sizes of local Luminous and Ultraluminous Infrared Galaxies. A Direct Comparison with high-z Massive Star Forming Galaxies

    Full text link
    Aims. We study the analogy between local U/LIRGs and high-z massive SFGs by comparing basic H{\alpha} structural characteristics, such as size, and luminosity (and SFR) surface density, in an homogeneous way (i.e. same tracer and size definition, similar physical scales). Methods. We use Integral Field Spectroscopy based H{\alpha} emission maps for a representative sample of 54 local U/LIRGs (66 galaxies). From this initial sample we select 26 objects with H{\alpha} luminosities (L(H{\alpha})) similar to those of massive (i.e. M\ast \sim 10^10 M\odot or larger) SFGs at z \sim 2, and observed on similar physical scales. Results. The sizes of the H{\alpha} emitting region in the sample of local U/LIRGs span a large range, with r1/2(H{\alpha}) from 0.2 to 7 kpc. However, about 2/3 of local U/LIRGs with Lir > 10^11.4 L\odot have compact H{\alpha} emission (i.e. r1/2 < 2 kpc). The comparison sample of local U/LIRGs also shows a higher fraction (59%) of objects with compact H{\alpha} emission than the high-z sample (25%). This gives further support to the idea that for this luminosity range the size of the star forming region is a distinctive factor between local and distant galaxies of similar SF rates. However, when using H{\alpha} as a tracer for both local and high-z samples, the differences are smaller than the ones recently reported using a variety of other tracers. Despite of the higher fraction of galaxies with compact H{\alpha} emission, a sizable group (\sim 1/3) of local U/LIRGs are large (i.e. r1/2 > 2 kpc). These are systems showing pre-coalescence merger activity and they are indistinguishable from the massive high-z SFGs galaxies in terms of their H{\alpha} sizes, and luminosity and SFR surface densities.Comment: Accepted for publication in A&A. (!5 pages, 7 figures, 2 tables
    corecore