9,277 research outputs found

    Electronic and atomic shell structure in aluminum nanowires

    Get PDF
    We report experiments on aluminum nanowires in ultra-high vacuum at room temperature that reveal a periodic spectrum of exceptionally stable structures. Two "magic" series of stable structures are observed: At low conductance, the formation of stable nanowires is governed by electronic shell effects whereas for larger contacts atomic packing dominates. The crossover between the two regimes is found to be smooth. A detailed comparison of the experimental results to a theoretical stability analysis indicates that while the main features of the observed electron-shell structure are similar to those of alkali and noble metals, a sequence of extremely stable wires plays a unique role in Aluminum. This series appears isolated in conductance histograms and can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure

    Development of an Advanced Force Field for Water using Variational Energy Decomposition Analysis

    Full text link
    Given the piecewise approach to modeling intermolecular interactions for force fields, they can be difficult to parameterize since they are fit to data like total energies that only indirectly connect to their separable functional forms. Furthermore, by neglecting certain types of molecular interactions such as charge penetration and charge transfer, most classical force fields must rely on, but do not always demonstrate, how cancellation of errors occurs among the remaining molecular interactions accounted for such as exchange repulsion, electrostatics, and polarization. In this work we present the first generation of the (many-body) MB-UCB force field that explicitly accounts for the decomposed molecular interactions commensurate with a variational energy decomposition analysis, including charge transfer, with force field design choices that reduce the computational expense of the MB-UCB potential while remaining accurate. We optimize parameters using only single water molecule and water cluster data up through pentamers, with no fitting to condensed phase data, and we demonstrate that high accuracy is maintained when the force field is subsequently validated against conformational energies of larger water cluster data sets, radial distribution functions of the liquid phase, and the temperature dependence of thermodynamic and transport water properties. We conclude that MB-UCB is comparable in performance to MB-Pol, but is less expensive and more transferable by eliminating the need to represent short-ranged interactions through large parameter fits to high order polynomials

    Spontaneous generation of spin-orbit coupling in magnetic dipolar Fermi gases

    Full text link
    The stability of an unpolarized two-component dipolar Fermi gas is studied within mean-field theory. Besides the known instability towards spontaneous magnetization with Fermi sphere deformation, another instability towards spontaneous formation of a spin-orbit coupled phase with a Rashba-like spin texture is found. A phase diagram is presented and consequences are briefly discussed

    Comparing Tycho-2 Astrometry with UCAC1

    Get PDF
    The Tycho-2 Catalogue, released in February 2000, is based on the ESA Hipparcos space mission data and various ground-based catalogs for proper motions. An external comparison of the Tycho-2 astrometry is presented here using the first U.S. Naval Observatory CCD Astrograph Catalog (UCAC1). The UCAC1 data were obtained from observations performed at CTIO between February 1998 and November 1999, using the 206 mm aperture 5-element lens astrograph and a 4k x 4k CCD. Only small systematic differences in position between Tycho-2 and UCAC1 up to 15 milliarcseconds (mas) are found, mainly as a function of magnitude. The standard deviations of the distributions of the position differences are in the 35 to 140 mas range, depending on magnitude. The observed scatter in the position differences is about 30% larger than expected from the combined formal, internal errors, also depending on magnitude. The Tycho-2 Catalogue has the more precise positions for bright stars (V <= 10 mag) while the UCAC1 positions are significantly better at the faint end (11 mag <= V <= 12.5 mag) of the magnitude range in common. UCAC1 goes much fainter (to R=16) than Tycho-2; however complete sky coverage is not expected before mid 2003.Comment: LaTeX, 8 pages, 3 PS figures, accepted by AJ (Aug 2000) see also http://ad.usno.navy.mil/ad/ucac/ request for UCAC1 CD-ROM: e-mail to [email protected] request for Tycho-2 CD-ROM: e-mail to [email protected] or [email protected]

    Optical beam guidance in monolithic polymer chips for miniaturized colorimetric assays

    Get PDF
    For the first time, we present a simple and robust optical concept to enable precise and sensitive read-out of colorimetric assays in flat lab-on-a-chip devices. The optical guidance of the probe beam through an incorporated measurement chamber to the detector is based on the total internal reflection at V-grooves in the polymer chip. This way, the optical path length through the flat measurement chamber and thus the performance of the measurements are massively enhanced compared to direct (perpendicular) beam incidence. This is demonstrated by a chip-based, colorimetric glucose-assay on serum. Outstanding features are an excellent reproducibility (CV= 1.91 %), a competitive lower limit of detection (cmin = 124 μM), and a high degree of linearity (R2 = 0.998) within a working range extending over nearly three orders of magnitude

    Repertoire Development and the Control of Cytotoxic/Effector Function in Human γδ T Cells

    Get PDF
    T cells develop into two major populations distinguished by their T cell receptor (TCR) chains. Cells with the αβ TCR generally express CD4 or CD8 lineage markers and mostly fall into helper or cytotoxic/effector subsets. Cells expressing the alternate γδ TCR in humans generally do not express lineage markers, do not require MHC for antigen presentation, and recognize nonpeptidic antigens. We are interested in the dominant Vγ2Vδ2+ T cell subset in human peripheral blood and the control of effector function in this population. We review the literature on γδ T cell generation and repertoire selection, along with recent work on CD56 expression and defining a cytotoxic/effector lineage within the phosphoantigen-reactive Vγ2Vδ2 cells. A unique mechanism for MHC-independent repertoire selection is linked to the control of effector function that is vital to the role for γδ T cells in tumor surveillance. Better understanding of these mechanisms will improve our ability to exploit this population for tumor immunotherapy

    Stability and Symmetry Breaking in Metal Nanowires

    Full text link
    A general linear stability analysis of simple metal nanowires is presented using a continuum approach which correctly accounts for material-specific surface properties and electronic quantum-size effects. The competition between surface tension and electron-shell effects leads to a complex landscape of stable structures as a function of diameter, cross section, and temperature. By considering arbitrary symmetry-breaking deformations, it is shown that the cylinder is the only generically stable structure. Nevertheless, a plethora of structures with broken axial symmetry is found at low conductance values, including wires with quadrupolar, hexapolar and octupolar cross sections. These non-integrable shapes are compared to previous results on elliptical cross sections, and their material-dependent relative stability is discussed.Comment: 12 pages, 4 figure

    Reconstruction of modified gravity with ghost dark energy models

    Full text link
    In this work, we reconstruct the f(R)f(R) modified gravity for different ghost and generalized ghost dark energy models in FRW flat universe, which describe the accelerated expansion of the universe. The equation of state of reconstructed f(R)f(R) - gravity has been calculated. We show that the corresponding f(R)f(R) gravity of ghost dark energy model can behave like phantom or quintessence. We also show that the equation of state of reconstructed f(R)f(R) gravity for generalized ghost model can transit from quintessence regime to the phantom regime as indicated by recent observations.Comment: 13 pages, some references and one author are added. Accepted for publication by MPL

    The second US Naval Observatory CCD Astrograph Catalog (UCAC2)

    Full text link
    The second USNO CCD Astrograph Catalog, UCAC2 was released in July 2003. Positions and proper motions for 48,330,571 sources (mostly stars) are available on 3 CDs, supplemented with 2MASS photometry for 99.5% of the sources. The catalog covers the sky area from -90 to +40 degrees declination, going up to +52 in some areas; this completely supersedes the UCAC1 released in 2001. Current epoch positions are obtained from observations with the USNO 8-inch Twin Astrograph equipped with a 4k CCD camera. The precision of the positions are 15 to 70 mas, depending on magnitude, with estimated systematic errors of 10 mas or below. Proper motions are derived by utilizing over 140 ground-and space-based catalogs, including Hipparcos/Tycho, the AC2000.2, as well as yet unpublished re-measures of the AGK2 plates and scans from the NPM and SPM plates. Proper motion errors are about 1 to 3 mas/yr for stars to 12th magnitude, and about 4 to 7 mas/yr for fainter stars to 16th magnitude. The observational data, astrometric reductions, results, and important information for the users of this catalog are presented.Comment: accepted by AJ, AAS LaTeX, 14 figures, 10 table
    corecore