36 research outputs found
Multi-channel phase-equivalent transformation and supersymmetry
Phase-equivalent transformation of local interaction is generalized to the
multi-channel case. Generally, the transformation does not change the number of
the bound states in the system and their energies. However, with a special
choice of the parameters, the transformation removes one of the bound states
and is equivalent to the multi-channel supersymmetry transformation recently
suggested by Sparenberg and Baye. Using the transformation, it is also possible
to add a bound state to the discrete spectrum of the system at a given energy
if the angular momentum at least in one of the coupled channels .Comment: 9 pages, revtex; to be published in Phys. At. Nucl. (Oct. 2000
Quaiselastic scattering from relativistic bound nucleons: Transverse-Longitudinal response
Predictions for electron induced proton knockout from the and
shells in O are presented using various approximations for the
relativistic nucleonic current. Results for the differential cross section,
transverse-longitudinal response () and left-right asymmetry
are compared at (GeV/c) corresponding to TJNAF experiment
89-003. We show that there are important dynamical and kinematical relativistic
effects which can be tested by experiment.Comment: 10 pages, including 2 figures. Removed preliminary experimental data
from the figure
Relativistic analysis of the 208Pb(e,e'p)207Tl reaction at high momentum
The recent 208Pb(e,e'p)207Tl data from NIKHEF-K at high missing momentum
(p_m>300 MeV/c) are compared to theoretical results obtained with a fully
relativistic formalism previously applied to analyze data on the low missing
momentum (p_m < 300 MeV/c) region. The same relativistic optical potential and
mean field wave functions are used in the two p_m-regions. The spectroscopic
factors of the various shells are extracted from the analysis of the low-p_m
data and then used in the high-p_m region. In contrast to previous analyses
using a nonrelativistic mean field formalism, we do not find a substantial
deviation from the mean field predictions other than that of the spectroscopic
factors, which appear to be consistent with both low- and high-p_m data. We
find that the difference between results of relativistic and nonrelativistic
formalisms is enhanced in the p_m<0 region that will be interesting to explore
experimentally.Comment: 12 pages, LaTeX+Revtex, included 3 postscript figures. To appear in
the Physical Review C (Rapid Communications
Relativistic mean field approximation to the analysis of 16O(e,e'p)15N data at |Q^2|\leq 0.4 (GeV/c)^2
We use the relativistic distorted wave impulse approximation to analyze data
on 16O(e,e'p)15N at |Q^2|\leq 0.4 (GeV/c)^2 that were obtained by different
groups and seemed controversial. Results for differential cross-sections,
response functions and A_TL asymmetry are discussed and compared to different
sets of experimental data for proton knockout from p_{1/2} and p_{3/2} shells
in 16O. We compare with a nonrelativistic approach to better identify
relativistic effects. The present relativistic approach is found to accommodate
most of the discrepancy between data from different groups, smoothing a long
standing controversy.Comment: 28 pages, 7 figures (eps). Major revision made. New figures added. To
be published in Phys. Rev.
Polarization transfer in the HeH reaction
Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2
was measured at the Mainz Microtron MAMI. The ratio of the transverse to the
longitudinal polarization components of the ejected protons was compared with
the same ratio for elastic ep scattering. The results are consistent with a
recent fully relativistic calculation which includes a predicted medium
modification of the proton form factor based on a quark-meson coupling model.Comment: 5 pages, Latex, 2 postscript figures, submitted to Physics Letters
Measurement of Rlt and Atl in the 4He(e,e'p)3H Reaction at pmiss of 130-300 MeV/c
We have measured the 4He(e,e'p)3H reaction at missing momenta of 130-300
MeV/c using the three-spectrometer facility at the Mainz microtron MAMI. Data
were taken in perpendicular kinematics to allow us to determine the response
function Rlt and the asymmetry term Atl. The data are compared to both
relativistic and non-relativistic calculations.Comment: To be published in the European Physical Journal
Distorted wave impulse approximation analysis for spin observables in nucleon quasi-elastic scattering and enhancement of the spin-longitudinal response
We present a formalism of distorted wave impulse approximation (DWIA) for
analyzing spin observables in nucleon inelastic and charge exchange reactions
leading to the continuum. It utilizes response functions calculated by the
continuum random phase approximation (RPA), which include the effective mass,
the spreading widths and the \Delta degrees of freedom. The Fermi motion is
treated by the optimal factorization, and the non-locality of the
nucleon-nucleon t-matrix by an averaged reaction plane approximation. By using
the formalism we calculated the spin-longitudinal and the spin-transverse cross
sections, ID_q and ID_p, of 12C, 40Ca (\vec{p},\vec{n}) at 494 and 346 MeV. The
calculation reasonably reproduced the observed ID_q, which is consistent with
the predicted enhancement of the spin-longitudinal response function R_L.
However, the observed ID_p is much larger than the calculated one, which was
consistent with neither the predicted quenching nor the spin-transverse
response function R_T obtained by the (e,e') scattering. The Landau-Migdal
parameter g'_N\Delta for the N\Delta transition interaction and the effective
mass at the nuclear center m^*(r=0) are treated as adjustable parameters. The
present analysis indicates that the smaller g'_{N\Delta}(\approx 0.3) and
m^*(0) \approx 0.7 m are preferable. We also investigate the validity of the
plane wave impulse approximation (PWIA) with the effective nucleon number
approximation for the absorption, by means of which R_L and R_T have
conventionally been extracted.Comment: RevTex 3, 29 pages, 2 tables, 8 figure
Measurement of the Induced Proton Polarization P_n in the 12C(e,e'\vec{p}) Reaction
The first measurements of the induced proton polarization, P_n, for the 12C
(e,e'\vec{p}) reaction are reported. The experiment was performed at quasifree
kinematics for energy and momentum transfer (\omega,q) \approx (294 MeV, 756
MeV/c) and sampled a recoil momentum range of 0-250 MeV/c. The induced
polarization arises from final-state interactions and for these kinematics is
dominated by the real part of the spin-orbit optical potential. The
distorted-wave impulse approximation provides good agreement with data for the
1p_{3/2} shell. The data for the continuum suggest that both the 1s_{1/2} shell
and underlying l > 1 configurations contribute.Comment: 5 pages LaTeX, 2 postscript figures, accepted by Physical Reveiw
Letter
Benchmark Test Calculation of a Four-Nucleon Bound State
In the past, several efficient methods have been developed to solve the
Schroedinger equation for four-nucleon bound states accurately. These are the
Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis
variational, the stochastic variational, the hyperspherical variational, the
Green's function Monte Carlo, the no-core shell model and the effective
interaction hyperspherical harmonic methods. In this article we compare the
energy eigenvalue results and some wave function properties using the realistic
AV8' NN interaction. The results of all schemes agree very well showing the
high accuracy of our present ability to calculate the four-nucleon bound state.Comment: 17 pages, 1 figure
Application of Multiple Scattering Theory to Lower Energy Elastic Nucleon-Nucleus Reactions
The optical model potentials for nucleon-nucleus elastic scattering at
~MeV are calculated for C, O, Si, Ca,
Fe, Zr and Pb in first order multiple scattering theory,
following the prescription of the spectator expansion, where the only inputs
are the free NN potentials, the nuclear densities and the nuclear mean field as
derived from microscopic nuclear structure calculations. These potentials are
used to predict differential cross sections, analyzing powers and spin rotation
functions for neutron and proton scattering at 65 MeV projectile energy and
compared with available experimental data.Comment: 12 pages (Revtex 3.0), 7 fig