282 research outputs found

    Modeling the Low State Spectrum of the X-Ray Nova XTE J1118+480

    Get PDF
    Based on recent multiwavelength observations of the new X-ray nova XTE J1118+480, we can place strong constraints on the geometry of the accretion flow in which a low/hard state spectrum, characteristic of an accreting black hole binary, is produced. We argue that the absence of any soft blackbody-like component in the X-ray band implies the existence of an extended hot optically-thin region, with the optically-thick cool disk truncated at some radius R_{tr} > 55 R_{Schw}. We show that such a model can indeed reproduce the main features of the observed spectrum: the relatively high optical to X-ray ratio, the sharp downturn in the far UV band and the hard X-ray spectrum. The absence of the disk blackbody component also underscores the requirement that the seed photons for thermal Comptonization be produced locally in the hot flow, e.g. via synchrotron radiation. We attribute the observed spectral break at 2 keV to absorption in a warm, partially ionized gas.Comment: 6 pages, including 1 figure; LaTeX (emulateapj5.sty), to appear in Ap

    Electron-Positron Pairs in Hot Accretion Flows and Thin Disk Coronae

    Full text link
    We investigate equilibrium accretion flows dominated by e+ee^+ e^- pairs. We consider one- and two-temperature accretion disk coronae above a thin disk, as well as hot optically thin two-temperature accretion flows without an underlying thin disk; we model the latter in the framework of advection-dominated accretion flows (ADAFs). In all three cases we include equipartition magnetic fields. We confirm the previous result that the equilibrium density of pairs in two-temperature ADAFs is negligible; and show that the inclusion of magnetic fields and the corresponding synchrotron cooling reduces the pair density even further. Similarly, we find that pairs are unimportant in two-temperature coronae. Even when the corona has significantly enhanced heating by direct transfer of viscous dissipation in the thin disk to the corona, the inefficient Coulomb coupling between protons and electrons acts as a bottleneck and prevents the high compactness required for pair-dominated solutions. Only in the case of a one-temperature corona model do we find pair-dominated thermal equilibria. These pair-dominated solutions occur over a limited range of optical depth and temperature.Comment: 38 pages, including 10 figures, LaTeX; to appear in Ap

    Evidence for Doppler-Shifted Iron Emission Lines in Black Hole Candidate 4U 1630-47

    Get PDF
    We report the first detection of a pair of correlated emission lines in the X-ray spectrum of black hole candidate 4U 1630-47 during its 1996 outburst, based on RXTE observations of the source. At the peak plateau of the outburst, the emission lines are detected, centered mostly at \sim5.7 keV and \sim7.7 keV, respectively, while the line energies exhibit random variability \sim5%. Interestingly, the lines move in a concerted manner to keep their separation roughly constant. The lines also vary greatly in strength, but with the lower-energy line always much stronger than the higher-energy one. The measured equivalent width ranges from \sim50 eV to \sim270 eV for the former, and from insignificant detection to \sim140 eV for the latter; the two are reasonably correlated. The correlation between the lines implies a causal connection --- perhaps they share a common origin. Both lines may arise from a single KαK_{\alpha} line of highly ionized iron that is Doppler-shifted either in a Keplerian accretion disk or in a bi-polar outflow or even both. In both scenarios, a change in the line energy might simply reflect a change in the ionization state of line-emitting matter. We discuss the implication of the results and also raise some questions about such interpretations.Comment: To appear in Ap

    Time-dependent conduction current in lithium niobate crystals with charged domain walls

    Full text link
    We present the experimental study of the increase and decrease of the abnormal conduction current appeared during polarization reversal at elevated temperatures (120-250 °C) in stoichiometric and MgO doped lithium niobate single crystals. It is shown that the conduction current is caused by existence of the through charged domain walls. The time dependence of the conduction current has been measured in low electric field immediately after partial switching. The maximal value of the conduction current in crystal with through charged domain walls is of 4-5 orders of magnitude higher than in initial single domain state. The activation energy is 1.1 eV. © 2013 AIP Publishing LLC

    Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991

    Get PDF
    We present a self-consistent model of accretion flows which unifies four distinct spectral states observed in black hole X-ray binaries: quiescent, low, intermediate and high states. In the quiescent, low and intermediate states, the flow consists of an inner hot advection-dominated part extending from the black hole horizon to a transition radius and an outer thin disk. In the high state the thin disk is present at all radii. The model is essentially parameter-free and treats consistently the dynamics of the accretion flow, the thermal balance of the ions and electrons, and the radiation processes in the accreting gas. With increasing mass accretion rate, the model goes through a sequence of stages for which the computed spectra resemble very well observations of the four spectral states; in particular, the low-to-high state transition observed in black hole binaries is naturally explained as resulting from a decrease in the transition radius. We also make a tentative proposal for the very high state, but this aspect of the model is less secure. We test the model against observations of the soft X-ray transient Nova Muscae during its 1991 outburst. The model reproduces the observed lightcurves and spectra surprisingly well, and makes a number of predictions which can be tested with future observations.Comment: 68 pages, LaTeX, includes 1 table (forgotten in the previous version) and 14 figures; submitted to The Astrophysical Journa

    Accretion and ejection in black-hole X-ray transients

    Get PDF
    Aims: We summarize the current observational picture of the outbursts of black-hole X-ray transients (BHTs), based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson Cosmic Battery (PRCB, Contopoulos & Kazanas 1998), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state. The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of the accretion flow, and this explains naturally why a jet is always present in the right part of the HLD. In the left part of the HLD, the accretion flow is in the form of a thin disk, and such a disk cannot sustain a strong poloidal magnetic filed. Thus, no jet is expected in this part of the HLD. The counterclockwise traversal of the HLD is explained as follows: the poloidal magnetic field in the ADAF forces the flow to remain ADAF and the source to move upwards in the HLD rather than to turn left. Thus, the history of the system determines the counterclockwise traversal of the HLD. As a result, no BHT is expected to ever traverse the entire HLD curve in the clockwise direction. Conclusions: We offer a physical interpretation of accretion and ejection in BHTs with only one parameter, the mass transfer rate.Comment: Accepted for publication in A&

    Black Hole and Neutron Star Transients in Quiescence

    Get PDF
    We consider the X-ray luminosity difference between neutron star and black hole soft X-ray transients (NS and BH SXTs) in quiescence. The current observational data suggest that BH SXTs are significantly fainter than NS SXTs. The luminosities of quiescent BH SXTs are consistent with the predictions of binary evolution models for the mass transfer rate if (1) accretion occurs via an ADAF in these systems and (2) the accreting compact objects have event horizons. The luminosities of quiescent NS SXTs are not consistent with the predictions of ADAF models when combined with binary evolution models, unless most of the mass accreted in the ADAF is prevented from reaching the neutron star surface. We consider the possibility that mass accretion is reduced in quiescent NS SXTs because of an efficient propeller and develop a model of the propeller effect that accounts for the observed luminosities. We argue that modest winds from ADAFs are consistent with the observations while strong winds are probably not.Comment: LateX, 37 pages, 7 figures; Accepted for publication in The Astrophysical Journa

    The Hardness-Intensity Diagram of Cygnus X-3: Revisiting the Radio/X-Ray States

    Full text link
    Cygnus X-3 is one of the brightest X-ray and radio sources in the Galaxy, and is well known for its erratic behaviour in X-rays as well as in the radio, occasionally producing major radio flares associated with relativistic ejections. However, even after many years of observations in various wavelength bands Cyg X-3 still eludes clear physical understanding. Studying different emission bands simultaneously in microquasars has proved to be a fruitful approach towards understanding these systems, especially by shedding light on the accretion disc/jet connection. We continue this legacy by constructing a hardness-intensity diagram (HID) from archival Rossi X-ray Timing Explorer data and linking simultaneous radio observations to it. We find that surprisingly Cyg X-3 sketches a similar shape in the HID to that seen in other transient black hole X-ray binaries during outburst but with distinct differences. Together with the results of this analysis and previous studies of Cyg X-3 we conclude that the X-ray states can be assigned to six distinct states. This categorization relies heavily on the simultaneous radio observations and we identify one new X-ray state, the hypersoft state, similar to the ultrasoft state, which is associated to the quenched radio state during which there is no or very faint radio emission. Recent observations of GeV flux observed from Cyg X-3 (Tavani et al. 2009; Fermi LAT Collaboration et al. 2009) during a soft X-ray and/or radio quenched state at the onset of a major radio flare hint that a very energetic process is at work during this time, which is also when the hypersoft X-ray state is observed. In addition, Cyg X-3 shows flaring with a wide range of hardness.Comment: 17 pages, 9 figures, accepted for publication in MNRA

    Self-organized growth of dendrite domains in lithium niobate and lithium tantalate single crystals

    Full text link
    The equipment of the Ural Center for Shared Use “Modern nanotechnology” UrFU was used. The research was made possible by Russian Science Foundation (Project №14-12-00826)
    corecore