318 research outputs found
The orbital motion of the Quintuplet cluster - a common origin for the Arches and Quintuplet clusters?
We investigate the orbital motion of the Quintuplet cluster near the Galactic
center with the aim of constraining formation scenarios of young, massive star
clusters in nuclear environments. Three epochs of adaptive optics high-angular
resolution imaging with Keck/NIRC2 and VLT/NACO were obtained over a time
baseline of 5.8 years, delivering an astrometric accuracy of 0.5-1 mas/yr.
Proper motions were derived in the cluster reference frame and were used to
distinguish cluster members from the majority of field stars. Fitting the
cluster and field proper motion distributions with 2D gaussian models, we
derive the orbital motion of the cluster for the first time. The Quintuplet is
moving with a 2D velocity of 132 +/- 15 km/s with respect to the field along
the Galactic plane, which yields a 3D orbital velocity of 167 +/- 15 km/s when
combined with the previously known radial velocity. From a sample of 119 stars
measured in three epochs, we derive an upper limit to the velocity dispersion
in the core of the Quintuplet cluster of sigma_1D < 10 km/s. Knowledge of the
three velocity components of the Quintuplet allows us to model the cluster
orbit in the potential of the inner Galaxy. Comparing the Quintuplet's orbit
with the Arches orbit, we discuss the possibility that both clusters originated
in the same area of the central molecular zone. [abridged]Comment: 40 pages, 12 figures, accepted for publication in Ap
Recommended from our members
Inference of single-cell phylogenies from lineage tracing data using Cassiopeia.
The pairing of CRISPR/Cas9-based gene editing with massively parallel single-cell readouts now enables large-scale lineage tracing. However, the rapid growth in complexity of data from these assays has outpaced our ability to accurately infer phylogenetic relationships. First, we introduce Cassiopeia-a suite of scalable maximum parsimony approaches for tree reconstruction. Second, we provide a simulation framework for evaluating algorithms and exploring lineage tracer design principles. Finally, we generate the most complex experimental lineage tracing dataset to date, 34,557 human cells continuously traced over 15 generations, and use it for benchmarking phylogenetic inference approaches. We show that Cassiopeia outperforms traditional methods by several metrics and under a wide variety of parameter regimes, and provide insight into the principles for the design of improved Cas9-enabled recorders. Together, these should broadly enable large-scale mammalian lineage tracing efforts. Cassiopeia and its benchmarking resources are publicly available at www.github.com/YosefLab/Cassiopeia
Circumstellar discs in Galactic centre clusters: Disc-bearing B-type stars in the Quintuplet and Arches clusters
We investigate the circumstellar disc fraction as determined from L-band
excess observations of the young, massive Arches and Quintuplet clusters
residing in the central molecular zone of the Milky Way. The Quintuplet cluster
was searched for L-band excess sources for the first time. We find a total of
26 excess sources in the Quintuplet cluster and 21 in the Arches cluster, of
which 13 are new detections. With the aid of proper motion membership samples,
the disc fraction of the Quintuplet cluster was derived for the first time to
be 4.0 +/- 0.7%. There is no evidence for a radially varying disc fraction in
this cluster. In the case of the Arches cluster, a disc fraction of 9.2 +/-
1.2% approximately out to the cluster's predicted tidal radius, r < 1.5 pc, is
observed. This excess fraction is consistent with our previously found disc
fraction in the cluster in the radial range 0.3 < r < 0.8 pc. In both clusters,
the host star mass range covers late A- to early B-type stars, 2 < M < 15 Msun,
as derived from J-band photospheric magnitudes. We discuss the unexpected
finding of dusty circumstellar discs in these UV intense environments in the
context of primordial disc survival and formation scenarios of secondary discs.
We consider the possibility that the L-band excess sources in the Arches and
Quintuplet clusters could be the high-mass counterparts to T Tauri
pre-transitional discs. As such a scenario requires a long pre-transitional
disc lifetime in a UV intense environment, we suggest that mass transfer discs
in binary systems are a likely formation mechanism for the B-star discs
observed in these starburst clusters.Comment: 47 pages, 22 figures, accepted by A&
Multiple episodes of star formation in the CN15/16/17 molecular complex
We have started a campaign to identify massive star clusters inside bright
molecular bubbles towards the Galactic Center. The CN15/16/17 molecular complex
is the first example of our study. The region is characterized by the presence
of two young clusters, DB10 and DB11, visible in the NIR, an ultra-compact HII
region identified in the radio, several young stellar objects visible in the
MIR, a bright diffuse nebulosity at 8\mu m coming from PAHs and sub-mm
continuum emission revealing the presence of cold dust. Given its position on
the sky (l=0.58, b=-0.85) and its kinematic distance of ~7.5 kpc, the region
was thought to be a very massive site of star formation in proximity of the
CMZ. The cluster DB11 was estimated to be as massive as 10^4 M_sun. However the
region's properties were known only through photometry and its kinematic
distance was very uncertain given its location at the tangential point. We
aimed at better characterizing the region and assess whether it could be a site
of massive star formation located close to the Galactic Center. We have
obtained NTT/SofI JHKs photometry and long slit K band spectroscopy of the
brightest members. We have additionally collected data in the radio, sub-mm and
mid infrared, resulting in a quite different picture of the region. We have
confirmed the presence of massive early B type stars and have derived a
spectro-photometric distance of ~1.2 kpc, much smaller than the kinematic
distance. Adopting this distance we obtain clusters masses of M(DB10) ~ 170
M_sun and M(DB11) ~ 275 M_sun. This is consistent with the absence of any O
star, confirmed by the excitation/ionization status of the nebula. No HeI
diffuse emission is detected in our spectroscopic observations at 2.113\mu m,
which would be expected if the region was hosting more massive stars. Radio
continuum measurements are also consistent with the region hosting at most
early B stars.Comment: Accepted for publication in Astronomy and Astrophysics. Fig. 1 and 3
presented in reduced resolutio
Tidal friction in close-in satellites and exoplanets. The Darwin theory re-visited
This report is a review of Darwin's classical theory of bodily tides in which
we present the analytical expressions for the orbital and rotational evolution
of the bodies and for the energy dissipation rates due to their tidal
interaction. General formulas are given which do not depend on any assumption
linking the tidal lags to the frequencies of the corresponding tidal waves
(except that equal frequency harmonics are assumed to span equal lags).
Emphasis is given to the cases of companions having reached one of the two
possible final states: (1) the super-synchronous stationary rotation resulting
from the vanishing of the average tidal torque; (2) the capture into a 1:1
spin-orbit resonance (true synchronization). In these cases, the energy
dissipation is controlled by the tidal harmonic with period equal to the
orbital period (instead of the semi-diurnal tide) and the singularity due to
the vanishing of the geometric phase lag does not exist. It is also shown that
the true synchronization with non-zero eccentricity is only possible if an
extra torque exists opposite to the tidal torque. The theory is developed
assuming that this additional torque is produced by an equatorial permanent
asymmetry in the companion. The results are model-dependent and the theory is
developed only to the second degree in eccentricity and inclination
(obliquity). It can easily be extended to higher orders, but formal accuracy
will not be a real improvement as long as the physics of the processes leading
to tidal lags is not better known.Comment: 30 pages, 7 figures, corrected typo
Surface albedo changes with time on Titan’s possible cryovolcanic sites: Cassini/VIMS processing and geophysical implications
We present a study on Titan’s possibly cryovolcanic and varying regions as suggested from previous studies [e.g. 1;2;7]. These regions, which are potentially subject to change over time in brightness and are located close to the equator, are Tui Regio, Hotei Regio, and Sotra Patera. We apply two methods on Cassini/VIMS data in order to retrieve their surface properties and monitor any temporal variations. First, we apply a statistical method, the Principal Component Analysis (PCA) [3;4] where we manage to isolate regions of distinct and diverse chemical composition called ‘Region of interest – RoI’. Then, we focus on retrieving the spectral differences (with respect to the Huygens landing site albedo) among the RoIs by applying a radiative transfer code (RT) [5;3]. Hence, we are able to view the dynamical range and evaluate the differences in surface albedo within the RoIs of the three regions. In addition, using this double procedure, we study the temporal surface variations of the three regions witnessing albedo changes with time for Tui Regio from 2005-2009 (darkening) and Sotra Patera from 2005-2006 (brightening) at all wavelengths [3]. The surface albedo variations and the presence of volcanic-like features within the regions in addition to a recent study [6] that calculates Titan's tidal response are significant indications for the connection of the interior with the cryovolcanic candidate features with implications for the satellite’s astrobiological potential
Stability of Terrestrial Planets in the Habitable Zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208
We have undertaken a thorough dynamical investigation of five extrasolar
planetary systems using extensive numerical experiments. The systems Gl 777 A,
HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning the question of
whether they could host terrestrial like planets in their habitable zones
(=HZ). First we investigated the mean motion resonances between fictitious
terrestrial planets and the existing gas giants in these five extrasolar
systems. Then a fine grid of initial conditions for a potential terrestrial
planet within the HZ was chosen for each system, from which the stability of
orbits was then assessed by direct integrations over a time interval of 1
million years. The computations were carried out using a Lie-series integration
method with an adaptive step size control. This integration method achieves
machine precision accuracy in a highly efficient and robust way, requiring no
special adjustments when the orbits have large eccentricities. The stability of
orbits was examined with a determination of the Renyi entropy, estimated from
recurrence plots, and with a more straight forward method based on the maximum
eccentricity achieved by the planet over the 1 million year integration.
Additionally, the eccentricity is an indication of the habitability of a
terrestrial planet in the HZ; any value of e>0.2 produces a significant
temperature difference on a planet's surface between apoapse and periapse. The
results for possible stable orbits for terrestrial planets in habitable zones
for the five systems are summarized as follows: for Gl 777 A nearly the entire
HZ is stable, for 47 Uma, HD 72659 and HD 4208 terrestrial planets can survive
for a sufficiently long time, while for Gl 614 our results exclude terrestrial
planets moving in stable orbits within the HZ.Comment: 14 pages, 18 figures submitted to A&
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
- …