425 research outputs found

    The Anomalous X-ray Pulsar 4U 0142+61: Variability in the infrared and a spectral break in the optical

    Get PDF
    We present new optical and infrared observations of the counterpart to the Anomalous X-ray Pulsar (AXP) 4U 0142+61 taken with the Keck I telescope. The counterpart is found to be variable in the infrared. This contrasts with our optical observations, which do not show any evidence for variability. Apart from the variability the AXP shows a remarkable spectral energy distribution. In particular, we find a sudden drop in flux going from V to B, presumably due to a spectral feature. We compare our results to those obtained for the two other securely identified AXP counterparts, to 1E 2259+586 and 1E 1048.1-5937. 4U 0142+61 is very similar to the former source in its X-ray timing and spectral properties, and we find that this similarity extends to the quiescent infrared to X-ray flux ratio. For 1E 1048.1-5937, which has different X-ray properties, the situation is less clear: in one observation, the infrared to X-ray flux ratio was much larger, but another observation gave an upper limit which is consistent with that observed for 4U 0142+61. Assuming the quiescent ratios are all similar, we estimate the optical and infrared brightnesses for the three AXPs that remain to be identified as well as for the four Soft Gamma-ray Repeaters. We also discuss briefly how the observed optical and infrared emission might arise, in particular in the context of the magnetar model

    Foot placement variables of pedestrians in community setting during curve walking

    Get PDF
    Background: There is no precise description of changes of gait during curve walking. Research in curve walking is exclusively performed in clinical settings. Research question: Is there a difference in foot placement variables between the inner- and the outer leg during curve walking in a natural environment? And are these differences correlated with time or the curvature of the path? Method: During this observational study, camera footage was shot on a crossing where pedestrians were not aware of being filmed. Participants (n = 21, male, 18?40 yrs) were selected from this video footage. Using the software package ?Movieprocessing?, the kinematic variables (time, curvature, stride length, step length, step width and relative foot angle (RFA)) were extracted from the collected data. A MANOVA and Pearson correlation test were performed to explore the data. Results: MANOVA showed no significant differences in stride length and step length between inner- and outer leg. In contrast, a significant difference between the inner (M = 0.06, SD = 0.05) and outer leg (M = 0.10, SD = 0.06, F(20,256) = 3.577, p < .001) for the step width, and the inner (M = 11.72, SD = 7.99) and outer leg (M = 11.30, SD = 8.07, F(20,256) = 4.542, p < .001) for RFA was found. Pearson correlation was significant for curvature and step width for both legs pooled (r = .28, p < .01) and the outer leg (r = .64, p < .01), as well for time and RFA in the inner (r= -.25, p < .01) and outer leg (r = .213, p < .01). Significance: This research funds further research in curve walking in natural conditions, since curve walking is found to be performed non-symmetrically and not determined by geometrics but by choice. Foot placement variables change gradually and differently for both legs during walking a curve

    Discovery of a 6.4 keV Emission Line in a Burst from SGR 1900+14

    Get PDF
    We present evidence of a 6.4 keV emission line during a burst from the soft gamma-ray repeater SGR 1900+14. The Rossi X-ray Timing Explorer (RXTE) monitored this source extensively during its outburst in the summer of 1998. A strong burst observed on August 29, 1998 revealed a number of unique properties. The burst exhibits a precursor and is followed by a long (~ 1000 s) tail modulated at the 5.16 s stellar rotation period. The precursor has a duration of 0.85 s and shows both significant spectral evolution as well as an emission feature centered near 6.4 keV during the first 0.3 s of the event, when the X-ray spectrum was hardest. The continuum during the burst is well fit with an optically thin thermal bremsstrahlung (OTTB) spectrum with the temperature ranging from about 40 to 10 keV. The line is strong, with an equivalent width of 400 eV, and is consistent with Fe K-alpha fluorescence from relatively cool material. If the rest-frame energy is indeed 6.4 keV, then the lack of an observed redshift indicates that the source is at least 80 km above the neutron star surface. We discuss the implications of the line detection in the context of models for SGRs.Comment: AASTex preprint, 14 pages, 3 embedded figures. Accepted for Publication in Astrophysical Journal Letter

    High-speed, multi-colour optical photometry of the anomalous X-ray pulsar 4U 0142+61 with ULTRACAM

    Get PDF
    We present high-speed, multi-colour optical photometry of the anomalous X-ray pulsar 4U 0142+61, obtained with ULTRACAM on the 4.2-m William Herschel Telescope. We detect 4U 0142+61 at magnitudes of i'=23.7+-0.1, g'=27.2+-0.2 and u'>25.8, consistent with the magnitudes found by Hulleman et al.(2004) and hence confirming their discovery of both a spectral break in the optical and a lack of long-term optical variability. We also confirm the discovery of Kern & Martin (2002) that 4U 0142+61 shows optical pulsations with an identical period (~8.7 s) to the X-ray pulsations. The rms pulsed fraction in our data is 29+-8%, 5-7 times greater than the 0.2-8 keV X-ray rms pulsed fraction. The optical and X-ray pulse profiles show similar morphologies and appear to be approximately in phase with each other, the former lagging the latter by only 0.04+-0.02 cycles. In conjunction with the constraints imposed by X-ray observations, the results presented here favour a magnetar interpretation for the anomalous X-ray pulsars.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    First results of observations of transient pulsar SAXJ2103.5+4545 with the INTEGRAL observatory

    Full text link
    We present preliminary results of observations of X-ray pulsar SAX J2103.5+4545 with INTEGRAL observatory in Dec 2002. Maps of this sky region in energy bands 3-10, 15-40, 40-100 and 100-200 keV are presented. The source is significantly detected up to energies of 100\sim100 keV. The hard X-ray flux in the 15-100 energy band is variable, that could be connected with the orbital phase of the binary system. We roughly reconstructed the source spectrum using its comparison to that of Crab nebula. It is shown that the parameters of the source spectrum in 18-150 keV energy range are compatible with that obtained earlier by RXTE observatoryComment: 5 pages, 4 figures, accepted for publication in the Astronomy Letter

    A possible faint near-infrared counterpart to the AXP 1E~2259+58.6

    Get PDF
    We present near-infrared and optical observations of the field of the Anomalous X-ray Pulsar 1E 2259+58.6 taken with the Keck telescope. We derive a subarcsecond Chandra position and tie it to our optical reference frame using other stars in the field. We find a very faint source, Ks = 21.7\pm0.2 mag, with a position coincident with the Chandra position. We argue that this is the counterpart. In the J, I, and R bands, we derive (2 sigma) limits of 23.8, 25.6 and 26.4 mag, respectively. As with 4U 0142+61, for which a counterpart has previously been found, our results are inconsistent with models in which the source is powered by accretion from a disk, but may be consistent with the magnetar model.Comment: 12 pages, 2 figures, accepted for ApJ Letters A manuscript with full resolution figures can be found at http://www.phys.uu.nl/~hulleman/e2259paper2.ps.g

    Emission Spectra of Fallback Disks Around Young Neutron Stars

    Full text link
    The nature of the energy source powering anomalous X-ray pulsars is uncertain. Proposed scenarios involve either an ultramagnetized neutron star, or accretion onto a neutron star. We consider the accretion model proposed recently by Chatterjee, Hernquist & Narayan, in which a disk is fed by fallback material following a supernova. We compute the optical, infrared, and submillimeter emission expected from such a disk, including both viscous dissipation and reradiation of X-ray flux impinging on the disk from the pulsar. We find that it is possible with current instruments to put serious constraints on this and on other accretion models of AXPs. Fallback disks could also be found around isolated radio pulsars and we compute the corresponding spectra. We show that the excess emission in the R and I bands observed for the pulsar PSR 0656+14 is broadly consistent with emission from a disk.Comment: 12 pages, 1 table, 4 figures, submitted to Ap

    Imaging X-ray, Optical, and Infrared Observations of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    We report X-ray imaging, timing, and spectral studies of XTE J1810-197, a 5.54s pulsar discovered by Ibrahim et al. (2003) in recent RXTE observations. In a set of short exposures with the Chandra HRC camera we detect a strongly modulated signal (55+/-4% pulsed fraction) with the expected period located at (J2000) 18:09:51.08, -19:43:51.7, with a uncertainty radius of 0.6 arcsec (90% C.L.). Spectra obtained with XMM-Newton are well fitted by a two-component model that typically describes anomalous X-ray pulsars (AXPs), an absorbed blackbody plus power law with parameters kT = 0.67+/-0.01 keV, Gamma=3.7+/-0.2, N_H=(1.05+/-0.05)E22 cm^-2, and Fx(0.5-10 keV) = 3.98E-11 ergs/cm2/s. Alternatively, a 2T blackbody fit is just as acceptable. The location of CXOU J180951.1-194351 is consistent with a point source seen in archival Einstein, Rosat, & ASCA images, when its flux was nearly two orders-of-magnitude fainter, and from which no pulsations are found. The spectrum changed dramatically between the "quiescent" and "active" states, the former can be modeled as a softer blackbody. Using XMM timing data, we place an upper limit of 0.03 lt-s on any orbital motion in the period range 10m-8hr. Optical and infrared images obtained on the SMARTS 1.3m telescope at CTIO show no object in the Chandra error circle to limits V=22.5, I=21.3, J=18.9, & K=17.5. Together, these results argue that CXOU J180951.1-194351 is an isolated neutron star, one most similar to the transient AXP AX J1844.8-0256. Continuing study of XTE J1810-197 in various states of luminosity is important for understanding and possibly unifying a growing class of isolated, young neutron stars that are not powered by rotation.Comment: 12 pages, 7 figures, AAS LaTex, uses emulateapj5.sty. Updated to include additional archival data and a new HRC observation. To appear in The Astrophysical Journa
    corecore