241 research outputs found
Charmonium spectral functions in collision
We study the in-medium propagation of low-lying charmonium states: ,
(3686), and (3770) in a Au GeV collision. This energy
regime will be available for the PANDA experiment. The time evolution of the
spectral functions of the charmonium states is studied with a BUU type
transport model. We observe a substantial effect of the medium in the dilepton
spectrum.Comment: 6 pages, 4 figures, Presented at Excited QCD 2017, Sintra, Portuga
Calculation of and Couplings in QCD Sum Rules
We calculate the coupling constants, and $, which is also important
in the calculation of the S_{11}(1535) mass itself within the sum rule
approach.Comment: 8 pages (no figure), revte
Sigma meson in QCD sum rules using a two quark current with derivatives
We study the meson in QCD sum rules using a two quark interpolating
field with derivatives. In the constituent quark model, the meson is
composed of a quark and an antiquark in the relative p-wave state and is thus
expected to have a larger overlap with an interpolating field that measures the
derivative of the relative quark wave-function. While the sum rule with a
current without derivatives gives a pole mass of around 1 GeV, the present sum
rule with a derivative current gives a mass of around 550 MeV and a width of
400 MeV, that could be identified with the meson.Comment: 4 pages, 2 figure
A shear spectral sum rule in a non-conformal gravity dual
A sum rule which relates a stress-energy tensor correlator to thermodynamic
functions is examined within the context of a simple non-conformal gravity
dual. Such a sum rule was previously derived using AdS/CFT for conformal
Supersymmetric Yang-Mills theory, but we show that it does
not generalize to the non-conformal theory under consideration. We provide a
generalized sum rule and numerically verify its validity. A useful byproduct of
the calculation is the computation of the spectral density in a strongly
coupled non-conformal theory. Qualitative features of the spectral densities
and implications for lattice measurements of transport coefficients are
discussed.Comment: 13 pages, 3 figures. v5: Typos in Eq. (60) fixed. v4: References
added, matches published version. v3: Minor typographical corrections. v2:
References and some discussion in Appendix A have been added; conclusions
unchange
Critical behavior of charmonia across the phase transition: A QCD sum rule approach
We investigate medium-induced change of mass and width of J/psi and eta_c
across the phase transition in hot gluonic matter using QCD sum rules. In the
QCD sum rule approach, the medium effect on heavy quarkonia is induced by the
change of both scalar and twist-2 gluon condensates, whose temperature
dependences are extracted from the lattice calculations of energy density and
pressure. Although the stability of the operator product expansion side seems
to break down at T > 1.06Tc for the vector channel and T>1.04Tc for the
pseudoscalar channel, we find a sudden change of the spectral property across
the critical temperature Tc, which originates from an equally rapid change of
the scalar gluon condensate characterized by e-3p. By parameterizing the ground
state of the spectral density by the Breit-Wigner form, we find that for both
J/psi and eta_c, the masses suddenly decrease maximally by a few hundreds of
MeV and the widths broaden to ~100 MeV slightly above Tc. Implications for
recent and future heavy ion experiments are discussed.
We also carry out a similar analysis for charmonia in nuclear matter, which
could serve as a testing ground for observing the precursor phenomena of the
QCD phase transition. We finally discuss the possibility of observing the mass
shift at nuclear matter at the FAIR project at GSI.Comment: 18 pages, 21 figures, 2 figures are added and discussion on effect of
dynamical quarks is extended. version to appear in Phys.Rev.
QCD sum rules for the anti-charmed pentaquark
We present a QCD sum rule analysis for the anti-charmed pentaquark state with
and without strangeness. While the sum rules for most of the currents are
either non-convergent or dominated by the continuum, the one for the
non-strange pentaquark current composed of two diquarks and an antiquark, is
convergent and has a structure consistent with a positive parity pentaquark
state after subtracting out the continuum contribution. Arguments are
presented on the similarity between the result of the present analysis and that
based on the constituent quark models, which predict a more stable pentaquark
states when the antiquark is heavy.Comment: 19 pages, 8 figures, REVTex, revised version,new figures added and
references update
Charmonium-hadron interactions from QCD
The heavy quark system is an excellent probe to learn about the QCD dynamics
at finite density. First, we discuss the properties of the and
meson at finite nucleon density. We discuss why their properties should change
at finite density and then introduce an exact QCD relation among these hadron
properties and the energy momentum tensor of the medium. Second, we discuss
attempts to calculate charmonium-hadron total cross section using effective
hadronic models and perturbative QCD. We emphasize a recent calculation, where
the cross section is derived using QCD factorization theorem. We conclude by
discussing some challenges for SIS 200.Comment: 8 pages, Presented at 6th International Conference on Strange Quarks
in Matter: 2001: A Flavorspace Odyssey (SQM2001), Frankfurt, Germany, 25-29
Sep 2001, submitted to J. Phys.
How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells?
Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways
Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal Nacellid limpets to climate change
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions
Two-point correlation function with pion in QCD sum rules
Within the framework of the conventional QCD sum rules, we study the pion
two-point correlation function, , beyond the soft-pion limit. We construct sum rules from the
three distinct Dirac structures, i \gamma_5 \notp, i \gamma_5, \gamma_5
\sigma_{\mu \nu} {q^\mu p^\nu} and study the reliability of each sum rule. The
sum rule from the third structure is found to be insensitive to the continuum
threshold, , and contains relatively small contribution from the
undetermined single pole which we denote as . The sum rule from the structure is very different even though it contains similar
contributions from and as the ones coming from the structure. On the other hand, the sum rule from
the i \gamma_5 \notp structure has strong dependence on both and ,
which is clearly in constrast with the sum rule for . We identify the source of the sensitivity for each of the sum
rules by making specific models for higher resonance contributions and discuss
the implication.Comment: slightly revised. version accepted for publication in Physical Review
- …