1,239 research outputs found

    Primary Particle Type of the Most Energetic Fly's Eye Air Shower

    Full text link
    The longitudinal profile of the most energetic cosmic-ray air shower measured so far, the event recorded by the Fly's Eye detector with a reconstructed primary energy of about 320 EeV, is compared to simulated shower profiles. The calculations are performed with the CORSIKA code and include primary photons and different hadron primaries. For primary photons, preshower formation in the geomagnetic field is additionally treated in detail. For primary hadrons, the hadronic interaction models QGSJET01 and SIBYLL2.1 have been employed. The predicted longitudinal profiles are compared to the observation. A method for testing the hypothesis of a specific primary particle type against the measured profile is described which naturally takes shower fluctuations into account. The Fly's Eye event is compatible with any assumption of a hadron primary between proton and iron nuclei in both interaction models, although differences between QGSJET01 and SIBYLL2.1 in the predicted profiles of lighter nuclei exist. The primary photon profiles differ from the data on a level of ~1.5 sigma. Although not favoured by the observation, the primary photon hypothesis can not be rejected for this particular event.Comment: 20 pages, 8 figures; v2 matches version accepted by Astroparticle Physic

    Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory

    Get PDF
    Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and initiate a preshower, i.e. a particle cascade before entering the atmosphere. We compare the preshower characteristics at the southern and northern sites of the Pierre Auger Observatory. In addition to a shift of the preshower patterns on the sky due to the different pointing of the local magnetic field vectors, the fact that the northern Auger site is closer to the geomagnetic pole results in a different energy dependence of the preshower effect: photon conversion can start at smaller energies, but large conversion probabilitites (>90%) are reached for the whole sky at higher energies compared to the southern Auger site. We show how the complementary preshower features at the two sites can be used to search for ultra-high energy photons among cosmic rays. In particular, the different preshower characteristics at the northern Auger site may provide an elegant and unambiguous confirmation if a photon signal is detected at the southern site.Comment: 25 pages, 14 figures, minor changes, conclusions unchanged, Appendix A replaced, accepted by Astroparticle Physic

    B779: Ectomycorrhizae of Maine. 2 A Listing of Lactarius with the Associated Hosts (with Additional Information on Edibility)

    Get PDF
    Thirty-nine Lactarii have been collected and identified with their possible ectomycorrhizal associates for Maine. Many of the Lactarius are new reports for Maine. Most of the ectomycorrhizal relationships reported from Maine are confirmed by the work of others. The edibility comments are those of the authors from the popular mushroom guides mentioned. Colored photos of thirty-nine Lactarii are included.https://digitalcommons.library.umaine.edu/aes_bulletin/1012/thumbnail.jp

    Search for photons at the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory has a unique potential to search for ultra-high energy photons (above ~1 EeV). First experimental limits on photons were obtained during construction of the southern part of the Observatory. Remarkably, already these limits have proven useful to falsify proposals about the origin of cosmic rays, and to perform fundamental physics by constraining Lorentz violation. A final discovery of photons at the upper end of the electromagnetic spectrum is likely to impact various branches of physics and astronomy.Comment: 5 pages, 5 figures. Presented at CRIS 2008, Malfa, Ital

    On a possible photon origin of the most-energetic AGASA events

    Full text link
    In this work the ultra high energy cosmic ray events recorded by the AGASA experiment are analysed. With detailed simulations of the extensive air showers initiated by photons, the probabilities are determined of the photonic origin of the 6 AGASA events for which the muon densities were measured and the reconstructed energies exceeded 10^20 eV. On this basis a new, preliminary upper limit on the photon fraction in cosmic rays above 10^20 eV is derived and compared to the predictions of exemplary top-down cosmic-ray origin models.Comment: 3 pages, 1 figure, 2 tables; presented at XIII ISVHECRI, Pylos, Greec

    B810: Ectomycorrhizae of Maine 3. A Listing of Hygrophorus with Associated Hosts

    Get PDF
    Hygrophori have been collected and identified with their possible ectomycorrhizal associates in Maine. Most of the ectomycorrhizal relationships reported from Maine were confirmed by the work of others. The information on edibility is from authors\u27 popular mushroom guides. Colored photos of forty-four Hygrophori are included here.https://digitalcommons.library.umaine.edu/aes_bulletin/1011/thumbnail.jp
    corecore