203 research outputs found

    Distribution of Stromal Cell Subsets in Cultures from Distinct Ocular Surface Compartments

    Get PDF
    Purpose: To reveal the phenotypic differences between human ocular surface stromal cells (hOSSCs) cultured from the corneal, limbal, and scleral compartments. Methods: A comparative analysis of cultured hOSSCs derived from four unrelated donors was conducted by multichromatic flow cytometry for six distinct CD antigens, including the CD73, CD90, CD105, CD166, CD146, and CD34. Results: The hOSSCs, as well as the reference cells, displayed phenotypical profiles that were similar in high expression of the hallmark mesenchymal stem cell markers CD73, CD90, and CD105, and also the cancer stem cell marker CD166. Notably, there was considerable variation regarding the expression of CD34, where the highest levels were found in the corneal and scleral compartments. The multi-differentiation potential marker CD146 was also expressed highly variably, ranging from 9% to 89%, but the limbal stromal and endometrial mesenchymal stem cells significantly surpassed their counterparts within the ocular and reference groups, respectively. The use of six markers enabled investigation of 64 possible variants, however, just four variants accounted for almost 90% of all hOSSCs, with the co-expression of CD73, CD90, CD105, and CD166 and a combination of CD146 and CD34. The limbal compartment appeared unique in that it displayed greatest immunophenotype diversity and harbored the highest proportion of the CD146+CD34- pericyte-like forms, but, interestingly, the pericyte-like cells were also found in the avascular cornea. Conclusions: Our findings confirm that the hOSSCs exhibit an immunophenotype consistent with that of MSCs, further highlight the phenotypical heterogeneity in stroma from distinct ocular surface compartments, and finally underscore the uniqueness of the limbal region.&nbsp

    Nonlinear Elasticity in Biological Gels

    Full text link
    Unlike most synthetic materials, biological materials often stiffen as they are deformed. This nonlinear elastic response, critical for the physiological function of some tissues, has been documented since at least the 19th century, but the molecular structure and the design principles responsible for it are unknown. Current models for this response require geometrically complex ordered structures unique to each material. In this Article we show that a much simpler molecular theory accounts for strain stiffening in a wide range of molecularly distinct biopolymer gels formed from purified cytoskeletal and extracellular proteins. This theory shows that systems of semi-flexible chains such as filamentous proteins arranged in an open crosslinked meshwork invariably stiffen at low strains without the need for a specific architecture or multiple elements with different intrinsic stiffnesses.Comment: 23 pages, 5 figures, submitted to Natur

    Per-operative stent placement in the right pulmonary artery; a hybrid technique for the management of pulmonary artery branch stenosis at the time of pulmonary valve replacement in adult Fallot patients

    Get PDF
    After having undergone surgical correction at an early age, many patients with tetralogy of Fallot develop long-term complications including progressive pulmonary regurgitation and peripheral pulmonary stenosis. A high percentage of these patients need to undergo a second operation in their adolescence or early adulthood. If simultaneous treatment of both pulmonary regurgitation and peripheral pulmonary stenosis is warranted, a complete surgical approach has several disadvantages. We describe four cases of Fallot patients with severe pulmonary regurgitation and peripheral pulmonary stenosis who were treated using a hybrid approach involving surgical implantation of a pulmonary homograft and peroperative stenting of the pulmonary artery

    Familial co-occurrence of congenital heart defects follows distinct patterns

    Get PDF
    Aims Congenital heart defects (CHD) affect almost 1% of all live born children and the number of adults with CHD is increasing. In families where CHD has occurred previously, estimates of recurrence risk, and the type of recurring malformation are important for counselling and clinical decision-making, but the recurrence patterns in families are poorly understood. We aimed to determine recurrence patterns, by investigating the co-occurrences of CHD in 1163 families with known malformations, comprising 3080 individuals with clinically confirmed diagnosis. Methods and results We calculated rates of concordance and discordance for 41 specific types of malformations, observing a high variability in the rates of concordance and discordance. By calculating odds ratios for each of 1640 pairs of discordant lesions observed between affected family members, we were able to identify 178 pairs of malformations that co-occurred significantly more or less often than expected in families. The data show that distinct groups of cardiac malformations co-occur in families, suggesting influence from underlying developmental mechanisms. Analysis of human and mouse susceptibility genes showed that they were shared in 19% and 20% of pairs of co-occurring discordant malformations, respectively, but none of malformations that rarely co-occur, suggesting that a significant proportion of co-occurring lesions in families is caused by overlapping susceptibility genes. Conclusion Familial CHD follow specific patterns of recurrence, suggesting a strong influence from genetically regulated developmental mechanisms. Co-occurrence of malformations in families is caused by shared susceptibility genes

    Insulin resistance, adiponectin and adverse outcomes following elective cardiac surgery: a prospective follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance and adiponectin are markers of cardio-metabolic disease and associated with adverse cardiovascular outcomes. The present study examined whether preoperative insulin resistance or adiponectin were associated with short- and long-term adverse outcomes in non-diabetic patients undergoing elective cardiac surgery.</p> <p>Methods</p> <p>In a prospective study, we assessed insulin resistance and adiponectin levels from preoperative fasting blood samples in 836 patients undergoing cardiac surgery. Population-based medical registries were used for postoperative follow-up. Outcomes included all-cause death, myocardial infarction or percutaneous coronary intervention, stroke, re-exploration, renal failure, and infections. The ability of insulin resistance and adiponectin to predict clinical adverse outcomes was examined using receiver operating characteristics.</p> <p>Results</p> <p>Neither insulin resistance nor adiponectin were statistically significantly associated with 30-day mortality, but adiponectin was associated with an increased 31-365-day mortality (adjusted odds ratio 2.9 [95% confidence interval 1.3-6.4]) comparing the upper quartile with the three lower quartiles. Insulin resistance was a poor predictor of adverse outcomes. In contrast, the predictive accuracy of adiponectin (area under curve 0.75 [95% confidence interval 0.65-0.85]) was similar to that of the EuroSCORE (area under curve 0.75 [95% confidence interval 0.67-0.83]) and a model including adiponectin and the EuroSCORE had an area under curve of 0.78 [95% confidence interval 0.68-0.88] concerning 31-365-day mortality.</p> <p>Conclusions</p> <p>Elevated adiponectin levels, but not insulin resistance, were associated with increased mortality and appear to be a strong predictor of long-term mortality. Additional studies are warranted to further clarify the possible clinical role of adiponectin assessment in cardiac surgery.</p> <p>Trial Registration</p> <p>The Danish Data Protection Agency; reference no. 2007-41-1514.</p
    • …
    corecore