302 research outputs found

    MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.

    Get PDF
    Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases

    Evaluation of whole and core genome multilocus sequence typing allele schemes for Salmonella enterica outbreak detection in a national surveillance network, PulseNet USA

    Get PDF
    Salmonella enterica is a leading cause of bacterial foodborne and zoonotic illnesses in the United States. For this study, we applied four different whole genome sequencing (WGS)-based subtyping methods: high quality single-nucleotide polymorphism (hqSNP) analysis, whole genome multilocus sequence typing using either all loci [wgMLST (all loci)] and only chromosome-associated loci [wgMLST (chrom)], and core genome multilocus sequence typing (cgMLST) to a dataset of isolate sequences from 9 well-characterized Salmonella outbreaks. For each outbreak, we evaluated the genomic and epidemiologic concordance between hqSNP and allele-based methods. We first compared pairwise genomic differences using all four methods. We observed discrepancies in allele difference ranges when using wgMLST (all loci), likely caused by inflated genetic variation due to loci found on plasmids and/or other mobile genetic elements in the accessory genome. Therefore, we excluded wgMLST (all loci) results from any further comparisons in the study. Then, we created linear regression models and phylogenetic tanglegrams using the remaining three methods. K-means analysis using the silhouette method was applied to compare the ability of the three methods to partition outbreak and sporadic isolate sequences. Our results showed that pairwise hqSNP differences had high concordance with cgMLST and wgMLST (chrom) allele differences. The slopes of the regressions for hqSNP vs. allele pairwise differences were 0.58 (cgMLST) and 0.74 [wgMLST (chrom)], and the slope of the regression was 0.77 for cgMLST vs. wgMLST (chrom) pairwise differences. Tanglegrams showed high clustering concordance between methods using two statistical measures, the Baker’s gamma index (BGI) and cophenetic correlation coefficient (CCC), where 9/9 (100%) of outbreaks yielded BGI values β‰₯ 0.60 and CCCs were β‰₯ 0.97 across all nine outbreaks and all three methods. K-means analysis showed separation of outbreak and sporadic isolate groups with average silhouette widths β‰₯ 0.87 for outbreak groups and β‰₯ 0.16 for sporadic groups. This study demonstrates that Salmonella isolates clustered in concordance with epidemiologic data using three WGS-based subtyping methods and supports using cgMLST as the primary method for national surveillance of Salmonella outbreak clusters

    IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis

    Get PDF
    Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17ra(Ξ”K13)). Following oral Candida infection, Il17ra(Ξ”K13) mice exhibited fungal loads and weight loss indistinguishable from Il17ra(βˆ’/βˆ’) mice. Susceptibility in Il17ra(Ξ”K13) mice correlated with expression of the antimicrobial peptide Ξ²-defensin 3 (BD3, Defb3). Consistently, Defb3(βˆ’/βˆ’) mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3expression

    Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation

    Get PDF
    Regardless of current market conditions and availability of conventional petroleum sources, alternatives are needed to circumvent future economic and environmental impacts from continued exploration and harvesting of conventional hydrocarbons. Diatoms and green algae (microalgae) are eukaryotic photoautotrophs that can utilize inorganic carbon (e.g., CO2) as a carbon source and sunlight as an energy source, and many microalgae can store carbon and energy in the form of neutral lipids. In addition to accumulating useful precursors for biofuels and chemical feed stocks, the use of autotrophic microorganisms can further contribute to reduced CO2 emissions through utilization of atmospheric CO2. Because of the inherent connection between carbon, nitrogen, and phosphorus in biological systems, macronutrient deprivation has been proven to significantly enhance lipid accumulation in different diatom and algae species. However, much work is needed to understand the link between carbon, nitrogen, and phosphorus in controlling resource allocation at different levels of biological resolution (cellular versus ecological). An improved understanding of the relationship between the effects of N, P, and micronutrient availability on carbon resource allocation (cell growth versus lipid storage) in microalgae is needed in conjunction with life cycle analysis. This mini-review will briefly discuss the current literature on the use of nutrient deprivation and other conditions to control and optimize microalgal growth in the context of cell and lipid accumulation for scale-up processes

    Aspergillus fumigatus Stimulates the NLRP3 Inflammasome through a Pathway Requiring ROS Production and the Syk Tyrosine Kinase

    Get PDF
    Invasive aspergillosis (IA) is a life-threatening disease that occurs in immunodepressed patients when infected with Aspergillus fumigatus. This fungus is the second most-common causative agent of fungal disease after Candida albicans. Nevertheless, much remains to be learned about the mechanisms by which A. fulmigatus activates the innate immune system. We investigated the inflammatory response to conidia and hyphae of A. fumigatus and specifically, their capacity to trigger activation of an inflammasome. Our results show that in contrast to conidia, hyphal fragments induce NLRP3 inflammasome assembly, caspase-1 activation and IL-1Ξ² release from a human monocyte cell line. The ability of Aspergillus hyphae to activate the NLRP3 inflammasome in the monocytes requires K+ efflux and ROS production. In addition, our data show that NLRP3 inflammasome activation as well as pro-IL-1Ξ² expression relies on the Syk tyrosine kinase, which is downstream from the pathogen recognition receptor Dectin-1, reinforcing the importance of Dectin-1 in the innate immune response against fungal infection. Furthermore, we show that treatment of monocytes with corticosteroids inhibits transcription of the gene encoding IL-1Ξ². Thus, our data demonstrate that the innate immune response against A. fumigatus infection involves a two step activation process, with a first signal promoting expression and synthesis of pro-IL-1Ξ²; and a second signal, involving Syk-induced activation of the NLRP3 inflammasome and caspase-1, allowing processing and secretion of the mature cytokine

    Filarial Lymphedema Is Characterized by Antigen- Specific Th1 and Th17 Proinflammatory Responses and a Lack of Regulatory T Cells

    Get PDF
    Background: Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Methods and Findings: To elucidate the role of CD4+ T cell subsets in the development of lymphatic pathology, we examined specific sets of cytokines in individuals with filarial lymphedema in response to parasite antigen (BmA) and compared them with responses from asymptomatic infected individuals. We also examined expression patterns of Toll-like receptors (TLR1–10) and Nod-like receptors (Nod1, Nod2, and NALP3) in response to BmA. BmA induced significantly higher production of Th1-type cytokinesβ€”IFN-c and TNF-aβ€”in patients with lymphedema compared with asymptomatic individuals. Notably, expression of the Th17 family of cytokinesβ€”IL-17A, IL-17F, IL-21, and IL-23β€”was also significantly upregulated by BmA stimulation in lymphedema patients. In contrast, expression of Foxp3, GITR, TGFb, and CTLA-4, known to be expressed by regulatory T cells, was significantly impaired in patients with lymphedema. BmA also induced significantly higher expression of TLR2, 4, 7, and 9 as well Nod1 and 2 mRNA in patients with lymphedema compared with asymptomatic controls. Conclusion: Our findings implicate increased Th1/Th17 responses and decreased regulatory T cells as well as regulation of Toll- and Nod-like receptors in pathogenesis of filarial lymphedema

    Does Glycine max leaves or Garcinia Cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: a randomized control trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural food supplements with high flavonoid content are often claimed to promote weight-loss and lower plasma cholesterol in animal studies, but human studies have been more equivocal. The aim of this study was firstly to determine the effectiveness of natural food supplements containing <it>Glycine max </it>leaves extract (EGML) or <it>Garcinia cambogia </it>extract (GCE) to promote weight-loss and lower plasma cholesterol. Secondly to examine whether these supplements have any beneficial effect on lipid, adipocytokine or antioxidant profiles.</p> <p>Methods</p> <p>Eighty-six overweight subjects (Male:Female = 46:40, age: 20~50 yr, BMI > 23 < 29) were randomly assigned to three groups and administered tablets containing EGML (2 g/day), GCE (2 g/day) or placebo (starch, 2 g/day) for 10 weeks. At baseline and after 10 weeks, body composition, plasma cholesterol and diet were assessed. Blood analysis was also conducted to examine plasma lipoproteins, triglycerides, adipocytokines and antioxidants.</p> <p>Results</p> <p>EGML and GCE supplementation failed to promote weight-loss or any clinically significant change in %body fat. The EGML group had lower total cholesterol after 10 weeks compared to the placebo group (p < 0.05). EGML and GCE had no effect on triglycerides, non-HDL-C, adipocytokines or antioxidants when compared to placebo supplementation. However, HDL-C was higher in the EGML group (p < 0.001) after 10 weeks compared to the placebo group.</p> <p>Conclusions</p> <p>Ten weeks of EGML or GCE supplementation did not promote weight-loss or lower total cholesterol in overweight individuals consuming their habitual diet. Although, EGML did increase plasma HDL-C levels which is associated with a lower risk of atherosclerosis.</p

    A Novel Role for the NLRC4 Inflammasome in Mucosal Defenses against the Fungal Pathogen Candida albicans

    Get PDF
    Candida sp. are opportunistic fungal pathogens that colonize the skin and oral cavity and, when overgrown under permissive conditions, cause inflammation and disease. Previously, we identified a central role for the NLRP3 inflammasome in regulating IL-1Ξ² production and resistance to dissemination from oral infection with Candida albicans. Here we show that mucosal expression of NLRP3 and NLRC4 is induced by Candida infection, and up-regulation of these molecules is impaired in NLRP3 and NLRC4 deficient mice. Additionally, we reveal a role for the NLRC4 inflammasome in anti-fungal defenses. NLRC4 is important for control of mucosal Candida infection and impacts inflammatory cell recruitment to infected tissues, as well as protects against systemic dissemination of infection. Deficiency in either NLRC4 or NLRP3 results in severely attenuated pro-inflammatory and antimicrobial peptide responses in the oral cavity. Using bone marrow chimeric mouse models, we show that, in contrast to NLRP3 which limits the severity of infection when present in either the hematopoietic or stromal compartments, NLRC4 plays an important role in limiting mucosal candidiasis when functioning at the level of the mucosal stroma. Collectively, these studies reveal the tissue specific roles of the NLRP3 and NLRC4 inflammasome in innate immune responses against mucosal Candida infection

    Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis

    Get PDF
    Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1Ξ² and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that Ξ²-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1βˆ’/βˆ’ corneas have impaired IL-1Ξ² and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high Ξ²-glucan. In contrast to Dectin 1βˆ’/βˆ’ mice, cellular infiltration into infected TLR2βˆ’/βˆ’, TLR4βˆ’/βˆ’, and MD-2βˆ’/βˆ’ mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4βˆ’/βˆ’ mice, but not TLR2βˆ’/βˆ’ or MD-2βˆ’/βˆ’ mice. We also found that TRIFβˆ’/βˆ’ and TIRAPβˆ’/βˆ’ mice exhibited no fungal-killing defects, but that MyD88βˆ’/βˆ’ and IL-1R1βˆ’/βˆ’ mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which Ξ²-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1Ξ², and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing

    IL-1Ξ± Signaling Is Critical for Leukocyte Recruitment after Pulmonary Aspergillus fumigatus Challenge

    Get PDF
    Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited. Alveolar macrophages, lung resident macrophages, and airway epithelial cells constitute the first lines of defense against inhaled A. fumigatus conidia. Subsequently, neutrophils and inflammatory CCR2+ monocytes are recruited to the respiratory tract to prevent fungal growth. However, the mechanism of neutrophil and macrophage recruitment to the respiratory tract after A. fumigatus exposure remains an area of ongoing investigation. Here we show that A. fumigatus pulmonary challenge induces expression of the inflammasome-dependent cytokines IL-1Ξ² and IL-18 within the first 12 hours, while IL-1Ξ± expression continually increases over at least the first 48 hours. Strikingly, Il1r1-deficient mice are highly susceptible to pulmonary A. fumigatus challenge exemplified by robust fungal proliferation in the lung parenchyma. Enhanced susceptibility of Il1r1-deficient mice correlated with defects in leukocyte recruitment and anti-fungal activity. Importantly, IL-1Ξ± rather than IL-1Ξ² was crucial for optimal leukocyte recruitment. IL-1Ξ± signaling enhanced the production of CXCL1. Moreover, CCR2+ monocytes are required for optimal early IL-1Ξ± and CXCL1 expression in the lungs, as selective depletion of these cells resulted in their diminished expression, which in turn regulated the early accumulation of neutrophils in the lung after A. fumigatus challenge. Enhancement of pulmonary neutrophil recruitment and anti-fungal activity by CXCL1 treatment could limit fungal growth in the absence of IL-1Ξ± signaling. In contrast to the role of IL-1Ξ± in neutrophil recruitment, the inflammasome and IL-1Ξ² were only essential for optimal activation of anti-fungal activity of macrophages. As such, Pycard-deficient mice are mildly susceptible to A. fumigatus infection. Taken together, our data reveal central, non-redundant roles for IL-1Ξ± and IL-1Ξ² in controlling A. fumigatus infection in the murine lung
    • …
    corecore