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Salmonella enterica is a leading cause of bacterial foodborne and zoonotic

illnesses in the United States. For this study, we applied four different whole

genome sequencing (WGS)-based subtyping methods: high quality single-

nucleotide polymorphism (hqSNP) analysis, whole genome multilocus sequence

typing using either all loci [wgMLST (all loci)] and only chromosome-associated

loci [wgMLST (chrom)], and core genome multilocus sequence typing (cgMLST)

to a dataset of isolate sequences from 9 well-characterized Salmonella outbreaks.

For each outbreak, we evaluated the genomic and epidemiologic concordance

between hqSNP and allele-based methods. We first compared pairwise genomic

differences using all four methods. We observed discrepancies in allele difference

ranges when using wgMLST (all loci), likely caused by inflated genetic variation

due to loci found on plasmids and/or other mobile genetic elements in the

accessory genome. Therefore, we excluded wgMLST (all loci) results from any

further comparisons in the study. Then, we created linear regression models

and phylogenetic tanglegrams using the remaining three methods. K-means

analysis using the silhouette method was applied to compare the ability of

the three methods to partition outbreak and sporadic isolate sequences. Our

results showed that pairwise hqSNP differences had high concordance with

cgMLST and wgMLST (chrom) allele differences. The slopes of the regressions

for hqSNP vs. allele pairwise differences were 0.58 (cgMLST) and 0.74 [wgMLST

(chrom)], and the slope of the regression was 0.77 for cgMLST vs. wgMLST

(chrom) pairwise differences. Tanglegrams showed high clustering concordance

between methods using two statistical measures, the Baker’s gamma index (BGI)

and cophenetic correlation coefficient (CCC), where 9/9 (100%) of outbreaks

yielded BGI values ≥ 0.60 and CCCs were ≥ 0.97 across all nine outbreaks

and all three methods. K-means analysis showed separation of outbreak and

sporadic isolate groups with average silhouette widths ≥ 0.87 for outbreak
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groups and ≥ 0.16 for sporadic groups. This study demonstrates that Salmonella

isolates clustered in concordance with epidemiologic data using three WGS-

based subtyping methods and supports using cgMLST as the primary method for

national surveillance of Salmonella outbreak clusters.

KEYWORDS

Salmonella, cgMLST, wgMLST, hqSNP, surveillance, epidemiology, silhouette method

Introduction

Non-typhoidal Salmonella causes an estimated 1.28 million
illnesses, 19,300 hospitalizations, and 380 deaths in the
United States every year (Scallan et al., 2015). Salmonella infections
often cause mild to severe gastroenteritis with diarrhea, fever,
and stomach cramps, and invasive infections can be potentially
life threatening (Centers for Disease Control and Prevention,
2011). While most people with Salmonella infections recover
completely, some people may experience long term complications,
such as reactive arthritis or inflammatory bowel syndrome after
their infection ends (Ternhag et al., 2008; Zha et al., 2019).
Contaminated food, water, and contact with infected animals are
the sources for most Salmonella infections (Scallan et al., 2011)
and the number of cases attributed to zoonotic (animal to human)
transmission of Salmonella has increased in recent years (Dróżdż
et al., 2021).

Salmonella is a diverse group of bacteria consisting of two
species, Salmonella bongori and Salmonella enterica. Salmonella
enterica is further classified into six subspecies: enterica (I), salamae
(II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV), and indica
(VI) (Porwollik et al., 2004). S. enterica subspecies enterica (I)
strains represent the majority of Salmonella strains isolated from
humans and warm-blooded animals, while the other subspecies
and S. bongori are more typically (though not exclusively) isolated
from cold-blooded animals. Of the nearly 2,600 known Salmonella
serotypes, approximately 50 account for 99% of all clinical isolates
of Salmonella from humans and domestic mammals in the
United States. These 50 serotypes all belong to S. enterica subspecies
I (Centers for Disease Control and Prevention, 2011; Desai et al.,
2013).

PulseNet USA is the national molecular subtyping network for
foodborne disease surveillance in the United States (Swaminathan
et al., 2001; Gerner-Smidt et al., 2006; Ribot and Hise, 2016). This
network detects local and national clusters of foodborne illness,
including illnesses caused by Salmonella. The rapid detection
of illness clusters reduces the likelihood of outbreaks becoming

Abbreviations: CDC, Centers for Disease Control and Prevention;
APHL, Association of Public Health Laboratories; PFGE, pulsed-field
gel electrophoresis; WGS, whole genome sequencing; ANI, average
nucleotide identity; MLST, multilocus sequence typing; cgMLST, core
genome multilocus sequence typing; wgMLST, whole genome multilocus
sequence typing; SNP, single-nucleotide polymorphism; hqSNP, high quality
single-nucleotide polymorphism; NCBI, National Center for Biotechnology
Information; ST, sequence type; UPGMA, unweighted pair group method
and arithmetic mean; BGI, Baker’s gamma index; CCC, cophenetic
correlation coefficient.

large and widespread, thus preventing illnesses and reducing
healthcare costs (Scharff et al., 2016). PulseNet USA consists
of over 80 state and local public health laboratories and food
regulatory federal agencies coordinated by the US Centers for
Disease Control and Prevention (CDC) and the Association of
Public Health Laboratories (APHL) (Tolar et al., 2019). National
outbreak cluster detection and laboratory support of foodborne
outbreak investigations are the principal functions of the PulseNet
USA network.

Between 1996 and 2019, pulsed-field gel electrophoresis
(PFGE) was the primary subtyping method used by PulseNet
participating laboratories. However, due to the limitations of
PFGE, including its inability to fully distinguish outbreak
cases from background infections for clonal organisms such as
some Salmonella serotypes (Deng et al., 2014), PulseNet began
transitioning to using whole genome sequencing (WGS) as the
primary tool for outbreak cluster detection for Salmonella, and
completed the transition for Salmonella in July 2019 (Brown
et al., 2019; Ribot et al., 2019; Tolar et al., 2019). WGS provides
greater resolution compared with PFGE, resulting in more solved
outbreaks with fewer cases and allows multiple characterizations
of isolates using a single method (Jackson et al., 2016; Besser
et al., 2018; Tolar et al., 2019). For example, WGS analysis
can characterize bacteria by identifying the species, serotype,
genotype, and resistance genes all within a single laboratory
workflow (Stevens et al., 2022). For species identification, an
average nucleotide identify (ANI) (Thompson et al., 2013; Yoon
et al., 2017) calculation is integrated within a BioNumerics
v7.6.31 (Biomérieux, 2022). Reference Identification database.
This ANI calculation performs a computational analysis that
defines the species within the BioNumerics software. For serotype
determination, an in silico data analysis tool, SeqSero1 (Zhang
et al., 2019), has been integrated into PulseNet organism-specific
BioNumerics databases, and ResFinder2 (Florensa et al., 2022)
and PointFinder3 (Zankari et al., 2017) have been integrated for
resistance profiling. PulseNet-participating laboratories perform
WGS on isolates of Salmonella and upload analyzed WGS data,
including assemblies and metadata, in real time to the PulseNet
Salmonella national BioNumerics database housed at the CDC,
where national outbreak detection takes place (Tolar et al., 2019).

1 http://github.com/denglab/seqsero2

2 https://cge.food.dtu.dk/services/resfinder/

3 https://bitbucket.org/genomicepidemiology/pointfinder_db/src/
master/
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TABLE 1 Comparison of MLST and SNP-based approaches used in study to assess genetic similarity between genomes.

Comparison of WGS-based typing methods used in study

Method Approach Reference Genomic comparison
result

cgMLST Alignment to scheme of core loci
found to be present in ≥ 98% of the
representative Salmonella genomes

used to build the EnteroBase (Achtman
et al., 2012) allele scheme (n = 3,002)

Repository of allele calls for a set of
core loci

Allele distance matrix; UPGMA
phylogenetic tree

wgMLST (chromosome-associated loci) Alignment to a scheme of all
chromosome-associated loci
(including core) (n = 22,457)

Repository of allele calls for a set of
chromosome-associated loci

Allele distance matrix; UPGMA
phylogenetic tree

wgMLST (all loci) Alignment to scheme of all 22,457
chromosomal and an additional 2,901
plasmid loci, as well as 7-gene MLST

loci (n = 25,365)

Repository of allele calls for a set of
chromosome-associated loci and
accessory loci, and 7-gene MLST

scheme (Achtman et al., 2012)

Allele distance matrix; UPGMA
phylogenetic tree

hqSNP Mapping to reference genome; phage
regions and plasmid contigs were

masked

Closely related reference genome;
[SNPs with less reliability were filtered

out to produce a list of high quality
SNPs (hqSNPs)]

SNP alignment and SNP distance
matrix; maximum-likelihood

phylogenetic tree

Adapted from Uelze et al. (2020).

As next generation sequence technology has advanced,
surveillance networks such as PulseNet have utilized single-
nucleotide polymorphisms (SNPs) and core and whole genome
multilocus sequence (cg/wgMLST) typing methods to facilitate
phylogenetic analysis between bacterial strains. SNP and MLST-
based approaches are used to identify sequences that are genetically
related and may have a common source within the context of a
foodborne outbreak (Katz et al., 2017; Timme et al., 2017; Stevens
et al., 2022). For SNP comparisons, single-nucleotide changes are
used to infer phylogenetic relatedness between strains relative to a
closely related reference sequence (Katz et al., 2017). Core genome
(cgMLST) comparisons examine differences in core genome loci of
the isolates (those loci found in at least 95–98% of the reference
organism strains used to build the allele scheme) and can be used to
generate a phylogeny based on a subset of genes. For whole genome
MLST (wgMLST) comparisons, differences in both the core and
accessory genome loci of the isolates are compared between strains
and their pairwise genomic distances are used to generate a
phylogeny (Cody et al., 2017; Pearce et al., 2018; Joseph et al.,
2020). Both whole and core genome allele-based approaches are
well suited for quickly clustering clinical isolates that may be part
of the same outbreak before using higher resolution approaches
such as SNP analysis (Stevens et al., 2022). Table 1 provides a
comparison of the WGS-based analysis methods used in this study.

For SNP comparisons, CDC has developed a high quality
single-nucleotide polymorphism (hqSNP) pipeline called Lyve-
SET4 (Katz et al., 2017) to compare bacterial strains from
foodborne pathogens. This method has been used in numerous
foodborne outbreak investigations to examine the phylogeny
of strains within an outbreak. The design of Lyve-SET was
optimized for epidemiologic investigations and has shown that as
phylogenetic relatedness between strains increases, the likelihood
of epidemiological concordance increases (Katz et al., 2017).

For allele-based phylogenomic comparisons, PulseNet
primarily uses two allele-based MLST schemes that are

4 https://github.com/lskatz/lyve-set

incorporated into the Salmonella national BioNumerics database.
These include the core scheme that contains 3,002 loci and
represents the genes most commonly found in subspecies I of
S. enterica. The core and accessory genome make up the whole
genome MLST (chrom) scheme that contains 22,457 chromosomal
loci, inclusive of the 3,002 core genome loci (Figure 1). The core
and a portion of the whole genome MLST (chrom) schemes
used by PulseNet USA were developed by EnteroBase5 (Achtman
et al., 2012, 2021; Alikhan et al., 2018). Containing over 300,000
Salmonella genomes, EnteroBase provides a global overview of the
population structure of Salmonella and its species and subspecies
(Alikhan et al., 2018; Achtman et al., 2021). The remainder of
the whole genome MLST scheme was developed by Applied
Maths (Biomérieux, 2022) and schemes were integrated into a
BioNumerics v7.6.3 database. The wgMLST (all loci) scheme also
contains an additional 2,901 plasmid loci {[plasmid loci were not
included in the wgMLST (chrom) scheme]}, as well as a 7-gene
MLST loci scheme (Achtman et al., 2012; Figure 1). Loci were
defined as plasmid loci if the locus occurred 3 or more times in
a plasmid, where plasmids were defined as such by RefSeq, the
National Center for Biotechnology Information (NCBI) Reference
Sequence Database6 (Pruitt et al., 2007). Plasmid loci were
subsequently removed from the whole genome MLST (chrom) loci
scheme. Loci names for all schemes are included in Supplementary
Table 1.

Currently, allele-based comparisons are the standard method
for detecting outbreak clusters of Salmonella illness within
PulseNet USA. To accelerate national outbreak cluster detection,
sequenced isolates (including both assemblies and metadata) are
uploaded to the Salmonella national BioNumerics database where
they are quickly compared based on their cgMLST allele calls
(Tolar et al., 2019; Stevens et al., 2022). While wgMLST is used
to further refine clusters of other PulseNet organisms, such as
Listeria and Campylobacter (Nadon et al., 2017; Besser et al., 2018),

5 https://enterobase.warwick.ac.uk

6 https://www.ncbi.nlm.nih.gov/refseq/
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FIGURE 1

PulseNet Salmonella schema development. Number of loci included within schemes are shown for core genome, core plus accessory genome
[wgMLST(chrom)], plasmid (mobile), and 7-gene MLST. Loci names are provided in Supplementary Table 1.

for Salmonella, PulseNet’s primary national cluster definition is
seven or more clinical cases (three or more clinical cases for
rarer serotypes) uploaded to the Salmonella national BioNumerics
database within 60 days of each other and each clinical case
related within 0–10 allele differences by cgMLST. “Rarer” serotypes
comprise those serotypes that fall outside of the top ten serotypes
based on frequency of upload to the PulseNet national Salmonella
database. The number of clinical cases (7 vs. 3), 60-day window,
and 0–10 allele difference range, are all elements of PulseNet’s pre-
defined cluster coding criteria that have been established based on
previous outbreaks. Evaluation of allele differences and phylogenies
among genomic profiles that are housed within a central database
enables Salmonella outbreak cluster detection to take place at the
national level.

In addition to the various WGS-based analysis methods used
to detect closely genetically related outbreak clusters, previous
studies have shown that unsupervised machine learning techniques
can be used to cluster genomic data and to create models for
source attribution analyses (Coipan et al., 2020; Munck et al.,
2020). For genomic clustering, one such technique is K-means
analysis, which divides objects into clusters that share similarities
and that are dissimilar to objects belonging to another cluster
(Rahbar, 2017). This clustering of data can be performed without
a predefined cluster threshold such as PulseNet’s national cluster
detection definition, and thus, independently of knowledge from
prior outbreaks (Coipan et al., 2020).

The objective of this study was to evaluate the concordance
of four different WGS-based subtyping methods, including hqSNP,
wgMLST (examining all loci or chromosome-associated loci only),
and cgMLST, using pairwise genomic differences, linear regression
models, phylogenetic comparisons, and K-means analysis as an
unsupervised machine learning approach. Our findings may be
used to establish allele-based subtyping methods as a validated
mechanism for Salmonella outbreak cluster detection within a

national network such as PulseNet. Additionally, our study aims
to demonstrate that the allele schemes built into the PulseNet
Salmonella national BioNumerics database can be used to reliably
detect Salmonella outbreak clusters at various levels of genetic
diversity with the same epidemiologic concordance as hqSNP,
which is currently considered to be a gold standard genomic
comparison technique.

Materials and methods

Isolate characterization by WGS

Isolate sequences used in this study were generated by
PulseNet-participating laboratorians using Illumina MiSeq
sequencers (San Diego, CA, USA) according to PulseNet WGS
protocols7 and with Illumina Nextera XT or DNA Prep library
preparation kits (San Diego, CA, USA). Sequence reads were
assembled using SPAdes v3.78 (Prjibelski et al., 2020) implemented
in BioNumerics v7.6.3 and ANI was used to determine the genus
and species of the isolate (genome coverage > 70% and ANI score
> 92%) (Thompson et al., 2013). Sequences were checked for
contamination using microwell displacement amplification system
(MIDAS) (Nayfach et al., 2016), and if another genus was detected
at ≥ 1x coverage the sequence was determined to be contaminated
and no further analysis was performed. If no contamination was
detected, reads were evaluated for quality (average coverage ≥ 30x;
average quality score ≥ 30; assembly length = 4.4–5.7 Mbp) in
BioNumerics v7.6.3.

7 https://www.aphl.org/programs/food_safety/pages/pulsenet-
international-sops

8 https://cab.spbu.ru/software/spades/
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FIGURE 2

PulseNet Salmonella allele calling workflow. Blue text indicates conditional cutoffs.

Once genomes were determined to be Salmonella and passed
the quality assessment, allele calling was performed. Potential
alleles from query genomes were compared to an allele database
containing cgMLST, wgMLST, and 7-gene MLST loci using both
assembly-free and assembly-based approaches. If the query allele
was an exact match to an existing allele in the database, that allele
number was assigned to the query allele. If the query allele was not
an exact match, then a novel allele could be called by the assembly-
based workflow if the query allele contained start and stop codons,
no more than 100 base pairs (bp) of insertions and deletions
(indels), [as allele calling performance in BioNumerics may be
negatively influenced by coding sequence disruptions, including
repetitive indels (Weigand et al., 2021)], and ≥ 85% nucleotide
similarity to the reference allele for that locus (Figure 2). Reference
allele sequences used to call new alleles per locus are included in
the Salmonella wgMLST Reference Alleles supplementary data file
appended to this study. Further quality assessment of genomes
was performed using percentage of alleles called in cgMLST, and
genomes below 85% of alleles called in the cgMLST scheme were
considered to fail quality. While cgMLST schemes generally include
those loci present in the majority (95–98%) of isolates in a given
group of bacteria (Maiden et al., 2013; Moura et al., 2016; Pearce
et al., 2018) in a large national surveillance network such as
PulseNet USA, a lower threshold of 85% has been set to adjust
for laboratory variability that may be due to differences in staff,
capacity, and/or equipment and materials across the network.
Sequence types (STs) were determined using a link to EnteroBase’s
web-based 7-gene MLST database (Alikhan et al., 2018). Sequences
were uploaded to the PulseNet Salmonella national BioNumerics
database and sequence read archive (SRA) at NCBI under the
PulseNet Salmonella BioProject, PRJNA230403 (Tolar et al., 2019).

Selection of isolate datasets

A total of 200 Salmonella isolates from 9 foodborne outbreaks
was selected from the PulseNet Salmonella national BioNumerics

database. The 9 outbreaks were identified in 2018 and all had
well-characterized sources based on epidemiologic investigations
conducted by state public health departments and the outbreak
response and prevention branch at the CDC. Each outbreak was
assigned a number between 01 and 09, and that number was used
to reference the outbreak throughout the study (Table 2). WGS
data was available for all 200 outbreak isolates. Since the goal of
outbreak detection is to distinguish outbreak-related isolates from
non-outbreak isolates circulating at the same time, a selection of
sporadic isolates was chosen to assess the ability of the MLST
allele schemes to differentiate outbreak isolates from contemporary
sporadic isolates. Sporadic isolates were chosen based on matching
serotype and/or 7-gene MLST sequence type (ST) when compared
to the corresponding outbreak isolates. The sporadic isolates were
recovered within the same year as the outbreak isolates, except
for one outbreak (outbreak 01) where sporadic isolates from
other years were used because there were none available from
the outbreak year. Isolates were determined to be sporadic if they
were not associated with any previously detected or investigated
disease clusters. A total of 47 sporadic isolates were chosen, and the
number of sporadic isolates per outbreak varied depending on data
availability; i.e., the number of sporadic isolates was lower among
more rare serotypes and/or STs. For more common serotypes
and/or STs, not all sporadic isolates that matched by serotype
and/or ST were included; rather, the selection was limited to
contemporary isolates (within a six-month window of the outbreak,
based on median collection date) with no previous disease cluster
association. WGS data was available for all 47 sporadic isolates.

High quality SNP analysis

High quality SNP (hqSNP) data was generated for all outbreak
and sporadic isolates included in the study. The hqSNP analyses
were generated through the SNP-calling pipeline Lyve-SET v.1.1.4f
with the default modules selected for mapping and SNP calling
(see text footnote 4). Prior to SNP calling, options were set
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TABLE 2 Summary of information for outbreaks included in study.

Outbreak
number
(assigned
in study)

PulseNet
outbreak

code*

Total
number of
outbreak
isolates

Confirmed
source

Serotype MLST_ST Range of
collection

dates

Total
number of
sporadic
isolates

Sporadic
isolate
dataset

defined by

01 1801MLJIX-1 15 Sprouts Cubana ST286 2/5/2018 to
4/25/2018

2 ST, serotype

02 1802MLJBP-1 48 Eggs Braenderup ST22 2/28/2017 to
5/07/2018

10 ST, serotype

03 1806NYJPX-1 31 Kosher chicken I 4, [5], 12:i:- ST19 9/26/2017 to
8/16/2018

10 ST, serotype

04 1807ORJDX-1 18 Ground beef Dublin ST10 7/17/2018 to
07/24/2018

1 ST, serotype

05 1808MLJPX-1 8 Whey protein Typhimurium ST19 6/27/2018 to
7/31/2018

11 ST, serotype

06 1809TNJEG-1 54 Eggs Enteritidis ST11 3/03/2018 to
9/6/2018

3 ST, serotype

07 1810MLJFX-1 7 English
cucumbers

Infantis ST32 8/27/2018 to
9/17/2018

3 ST, serotype

08 1810MLJRF-1 7 Cake mix Agbeni ST2606 6/13/2018 to
10/8/2018

4 ST, serotype

09 1811MLCO2-1 12 Tahini Concord ST599 6/19/2018 to
1/6/2019

3 serotype

*PulseNet outbreak codes are designated by the 2-digit year in which the outbreak was detected, 2-digit month in which the outbreak was detected, lab ID/state in which the outbreak was
detected (“ML” = multi-state), 3-digit serotype code (Gerner-Smidt et al., 2006), followed by–#. If multiple outbreaks meet the same criteria, then # is changed from 1 to 2, 2 to 3, etc. For
example, 1712MLJPX-2 represents the 2nd multi-state Typhimurium outbreak detected in December 2017. 1712MLJPX-3 represents the 3rd multi-state Typhimurium outbreak detected in
December 2017, and so on.

according to the Salmonella-specific thresholds specified under the
“Salmonella_enterica” configuration; Lyve-SET workflow option
“–presets,” respectively (Katz et al., 2017). An internal draft
reference, belonging to the specified outbreak, or an external closed
reference, neither associated with the outbreak or sporadic isolate
set, was selected (Supplementary Table 2). Reference sequences
were assembled using SPAdes v.3.14.0 with plasmids masked using
PlasFlow v1.19 (Krawczyk et al., 2018) through identification and
exclusion. Phages were masked using the Lyve-SET workflow.
For each outbreak, two hqSNP analyses were performed where
one contained solely outbreak associated genomes and the second
included the sporadic set for the outbreak. A phylogenetic tree
(RaxML) (Stamatakis, 2014) and pairwise SNP difference matrix
were generated for each hqSNP analysis.

Comparison of WGS-based subtyping
methods

For this study, pairwise genomic differences, linear regression
models, phylogenetic tanglegrams, and K-means analysis were
used to evaluate the concordance between SNP and allele-based
subtyping methods. To generate pairwise genomic differences
for the allele-based methods, a cluster analysis in BioNumerics
v7.6.3 was performed for each outbreak using wgMLST [all loci
(chromosomal plus plasmid)], wgMLST [chrom (chromosome-
associated loci only)], and cgMLST (core loci), with unweighted

9 https://github.com/smaegol/plasflow

pair group method and arithmetic mean (UPGMA) used as the
clustering technique. For each outbreak, allele differences were
exported into pairwise matrices. For two outbreaks where there
were large discrepancies in pairwise differences observed when
wgMLST (all loci) was used, the number of isolates aligned to
plasmid-associated loci was identified using the sub-scheme of
2,901 plasmid-associated loci (Figure 1) available in BioNumerics
v7.6.3. Due to these discrepancies, the wgMLST (all loci) scheme
was excluded from further analysis for the remainder of the study.
Pairwise genomic differences for SNP analyses were evaluated
using the SNP difference matrices generated for each outbreak.
The overall range of SNP or allele differences between strains was
recorded for each outbreak.

For the regression models, pairwise genomic difference
matrices for the outbreaks were combined into one overall
profile per subtyping method for cgMLST, wgMLST (chrom),
and hqSNP. Pairwise differences were calculated within outbreaks,
rather than between outbreaks, before being combined into the
overall profiles. Using cgMLST, wgMLST (chrom), and hqSNP,
three scatterplots were created in R/R Studio v1.4.1717 using the
ggplot2 package to compare the genomic differences generated by
one subtyping method to that of the other two. For each scatterplot,
a simple linear regression line was fitted to model the relationship
between methods.

For the tanglegrams, outbreak isolates were combined with
their corresponding sporadic isolate sets and constructed into
dendrograms of the clustering phylogeny. Three tanglegrams were
generated for each outbreak, whereby dendrograms obtained using
each subtyping method, [cgMLST, wgMLST (chrom), and hqSNP]
were compared to that of the other two. Allele-based dendrograms
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were constructed in BioNumerics v7.6.3 using UPGMA as the
clustering technique. SNP-based dendrograms were constructed
using the maximum likelihood method. All allele and SNP-based
dendrograms were converted to Newick format and assembled
into tanglegrams in Base R v4.1.2 (R Core Team, 2023) using
the dendextend package and the layout was optimized using the
step2side method (Galili, 2015).

For the K-means analysis, pairwise genomic differences from
outbreak isolates were combined with that of corresponding
sporadic isolates for 8 of the 9 outbreaks. Outbreak 04 was
excluded from the K-means analysis because it contained only one
isolate in the sporadic isolate set, preventing a separate group of
sporadic isolates from forming. For each combined set of outbreak
and sporadic isolate pairwise genomic differences, the silhouette
method (Shutaywi and Kachouie, 2021) in R/R Studio v1.4.1717
(Nbclust package) (Charrad et al., 2014) was used to identify the
optimal number of clusters, or K, in each set. Then, a hierarchical
divisive cluster analysis was performed in R/R Studio v1.4.1717
using the hclust function (Stats package) (R Studio Team, 2023)
to show partitioning of outbreak and sporadic isolates into two
groups per outbreak. The fviz_dend and fviz_cluster functions
(Factoextra package) (Kassambara and Mundt, 2020) were used for
data visualization. This exercise was performed for each combined
outbreak and sporadic isolate set using cgMLST, wgMLST (chrom),
and hqSNP pairwise genomic differences.

Statistical evaluation of concordance
between subtyping methods

For the regression models, the lm() function in R/R Studio
v1.4.1717 (R stats package) (R Core Team, 2023; R Studio Team,
2023) was used to return information about the strength of each
model as measured by an R2 value. Additionally, a Pearson’s
correlation coefficient was calculated (Performance Analytics
package) to show the overall correlation between each subtyping
method. For the tanglegrams, the association of the branches
in the two opposing dendrograms was statistically measured by
calculating the Baker’s gamma index (BGI) (Baker, 1974) and
cophenetic correlation coefficient (CCC) (Saraçli et al., 2013). Both
measures were obtained using the dendextend package in Base R
v4.1.2 (R Core Team, 2023). For the K-means analysis, the Km_stats
function from the cluster and NbClust packages in R/R Studio
v1.4.1717 were used to obtain a Pearson’s gamma coefficient to
describe the statistical significance of K = 2, once 2 had been defined
as the optimal number of clusters in each combined set of outbreak
and sporadic isolates based on the maximum silhouette score.

Results

Summary of outbreak information

A summary table of the outbreaks included in this study
is shown in Table 2. Outbreaks included 9 unique serotypes.
Collection dates ranged from 2/28/2017 to 10/08/2018. For 8 of 9
outbreaks, sporadic isolate sets were defined using both serotype
and ST; for one outbreak, only serotype was used.

Pairwise differences

For each outbreak, the range of SNP and allele-based pairwise
genomic differences between strains is shown in Table 3. SNP
differences were highly concordant with cgMLST and wgMLST
(chrom) allele differences. However, SNP, cgMLST, and wgMLST
(chrom) allele differences were less concordant when compared to
wgMLST (all loci) differences. For 2 outbreaks, (outbreaks 03 and
04), there were much larger allele difference ranges using wgMLST
(all loci) compared to SNP and cgMLST allele difference ranges.
For outbreak 03, cgMLST allele differences ranged from 0–4 and
wgMLST (all loci) differences ranged from 0 to 66; SNP differences
ranged from 0 to 8. For outbreak 04, cgMLST allele differences
ranged from 0 to 0 and wgMLST (all loci) differences ranged from
0 to 62; SNP differences ranged from 0 to 0. Within outbreak 03,
there were 7 isolates that extended wgMLST (all loci) differences
out to the higher range, of which 4 contained allele differences that
were aligned to plasmid-associated loci. Within outbreak 04, there
was 1 isolate that extended the wgMLST (all loci) difference range,
and this isolate contained allele differences aligned to plasmid-
associated loci. For these 2 discrepant outbreaks, pairwise SNP
differences were highly concordant between cgMLST and wgMLST
(chrom) but not with wgMLST (all loci). Due to these discrepancies,
the wgMLST (all loci) scheme was not analyzed further.

Linear regression models

For all outbreak isolate sequences, allele-based [cgMLST and
wgMLST (chrom)] pairwise genetic differences were plotted against
their respective hqSNP differences and are shown in Figure 3A
(cgMLST) and Figure 3B [wgMLST (chrom)]. The slopes of their
linear regressions were 0.58 and 0.74, respectively, indicating that
there were slightly lower allele differences between pairwise isolates
versus hqSNP differences. The y-intercepts comparing cgMLST
and wgMLST (chrom) allele differences to hqSNP differences were
0.18 and 0.39, respectively, illustrating that on average, sequences
that were zero hqSNPs different were < 1 allele different. The
goodness of fit for these models, as measured by an R2 value,
were 0.88 (cgMLST vs. hqSNP) and 0.91 [wgMLST (chrom) vs.
hqSNP]. The Pearson correlation coefficients were 0.94 for cgMLST
and 0.95 for wgMLST (chrom) compared to hqSNP analysis.
For the same set of outbreak isolate sequences, there was also
high correlation (R2 = 0.95) between cgMLST and wgMLST
(chrom) allele differences. The slope of the linear regression was
0.77, indicating that there were slightly lower cgMLST allele
differences per wgMLST (chrom) allele differences, as expected.
The y-intercept was 0.09, illustrating that sequences that were zero
alleles different by wgMLST using the chromosomal loci scheme
were < 1 allele different by cgMLST. The Pearson correlation
coefficient was 0.98 for cgMLST compared to wgMLST (chrom)
allele differences (Figure 3C). In all three regression plots, we
observed a shift in the proportion of points falling below the
regression line at approximately 12–15 genomic differences on the
x-axis. This may be a reflection of the size and genetic diversity of
outbreaks 02 and 06, both of which contained a larger number of
outbreak sequences relative to other outbreaks (Table 2) as well as
wider SNP and allele ranges relative to other outbreaks (Table 3).
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TABLE 3 Range of hqSNP, cgMLST, and wgMLST allele differences between strains for the outbreaks included in this study.

Range of pairwise distances by typing method

Outbreak
number
assigned in
study

SNP cgMLST wgMLST
(chromosomal

loci)

wgMLST
(all loci)

Total number of
isolates extending
allele difference

range by wgMLST
(all loci)

Number of
outbreak isolates

with allele
differences aligned

to plasmid-
associated loci*

(isolate identifiers)

01 0–14 0–9 0–10 0–12

02 0–33 0–21 0–28 0–28

03 0–10 0–4 0–8 0–66 7 4 (PNUSAS054137,
PNUSAS051669,
PNUSAS038526,
PNUSAS037576)

04 0–0 0–0 0–0 0–62 1 1 (PNUSAS049574)

05 0–7 0–3 0–5 0–5

06 0–17 0–10 0–14 0–14

07 0–0 0–0 0–1 0–3

08 0–4 0–5 0–6 0–6

09 0–7 0–4 0–7 0–7

For wgMLST allele differences, ranges are shown for both the chromosomal loci and all loci. Two outbreaks with extended allele difference ranges by wgMLST (all loci) are highlighted in
gray, and, within these outbreaks, the number of isolates aligned to plasmid-associated loci is shown. The background color shading indicates the two outbreaks with isolates aligned to
plasmid-associated loci.

Tanglegrams

For all 9 outbreaks, tanglegrams showed high concordance
between the subtyping methods in terms of each method’s ability
to cluster outbreak and sporadic isolates separately. Clustering
concordance of allele-based methods [cgMLST vs. wgMLST
(chrom)] when compared to one another was measured with a
Baker’s gamma index (BGI) between 0.90 and 1.00, indicating
statistically similar clustering between trees. There was moderate
to high clustering concordance for allele vs. hqSNP tanglegrams,
with BGI values ranging from 0.60 to 0.97 for cgMLST and 0.60 to
0.95 for wgMLST (chrom). Across all subtyping methods and for
all 9 outbreaks, the cophenetic correlation coefficient was ≥ 0.97,
representing high preservation of original pairwise distances in the
dendrograms (Supplementary Table 3 and Figure 4).

K-means analysis

For all outbreaks and across each subtyping method, [cgMLST,
wgMLST (chrom), and hqSNP], the silhouette score was
maximized at K = 2, designating 2 as the optimal number of
clusters or groups within each combined set of outbreak and
sporadic isolate sequences. The statistical significance of K = 2
was measured by Pearson’s gamma coefficient, which ranged from
0.93 to 1.00 across outbreaks, indicating high quality of clustering
performed by the K-means analysis (Supplementary Table 4).
For each outbreak, the average silhouette width for the outbreak
isolate group was consistently high across subtyping methods
and ranged from 0.91 to 0.99 (cgMLST), 0.88 to 0.99 [wgMLST
(chrom)], and 0.87 to 0.99 (hqSNP), where a value close to 1.00
indicates more cohesive clustering. The average silhouette widths

for the sporadic isolate groups were more variable, ranging from
0.21 to 0.96 (cgMLST), 0.16 to 0.93 [wgMLST (chrom)] and 0.31
to 0.96 (hqSNP). Among the sporadic isolate groups, a lower
silhouette width was observed for outbreaks where the sporadic
isolate set contained a low number of isolates and/or contained
more genetic diversity, preventing isolates from clustering as
tightly with one another into their own group (Supplementary
Table 5). For all 9 outbreaks, a hierarchical divisive cluster analysis
showed optimal partitioning of outbreak and sporadic isolates
into two distinct groups across subtyping methods, as shown with
cluster dendrograms and elliptical plots. These are displayed for
one representative outbreak (outbreak 03) in Figure 5.

Table 4 provides a summary of all metrics obtained for each
WGS-based analysis method in this study.

Discussion

Previous studies have shown that as phylogenetic
relatedness between bacterial strains increases, the likelihood
of epidemiological concordance increases (Katz et al., 2017).
Therefore, accuracy in identifying genetically related strains
is essential to outbreak detection and investigation. In a large
national surveillance network such as PulseNet USA, wherein
WGS has become the gold standard for cluster detection of
bacterial foodborne pathogens, validation of the methods utilized
for routine cluster detection is imperative. Thus, the overall
objective of this study was to verify that the whole and core
genome MLST-based genomic subtyping methods used within
the PulseNet network can be used to reliably detect clusters of
illness and to determine if one of the allele-based methods achieves
better results than the other. An additional purpose of this study
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FIGURE 3

Scatterplot of Lyve-SET hqSNP differences against cgMLST (A) and wgMLST (chrom) (B) pairwise allele differences and wgMLST (chrom) against
cgMLST pairwise allele differences (C). Regression equations, R2 values, and Pearson’s correlation coefficients are displayed on plots.

was to determine concordance between a gold standard genomic
comparison technique, hqSNP, and the allele-based methods used
by PulseNet USA.

The findings of this study indicate that the allele schemes
(core genome and whole genome using chromosomal loci)
built into the PulseNet Salmonella national database generate
outputs that are highly concordant with hqSNP analysis and
well-aligned with epidemiological data, providing confirmation
that allele-based methods can be used to detect clusters of
Salmonella. This outcome was also observed in a previous study
where four well-documented foodborne pathogen events showed
concordance between epidemiology and routine phylogenomic
analyses (reference-based SNP and wgMLST approaches) (Katz
et al., 2017). Additionally, a similar comparative analysis of cgMLST
and SNP typing within the context of a European Salmonella
Enteritidis outbreak again showed comparable findings, wherein
cgMLST analysis using the EnteroBase scheme was congruent
with the original SNP-based analysis, wgMLST analysis, and
epidemiological data (Pearce et al., 2018).

For this study, the concordance between WGS-based subtyping
methods was statistically measured by using simple linear
regression. These regression models confirmed a direct linear
relationship between the outputs of each of three subtyping
methods: cgMLST, wgMLST (chrom), and hqSNP. The correlation
coefficients quantified the strength of the linear relationship
between methods, whereas the regression models expressed their
relationship in the form of an equation. This finding is comparable
to other studies that have investigated the concordance of WGS-
based typing methods using statistical approaches, necessitated
by the increasing co-existence of wgMLST and SNP analyses in
surveillance of foodborne pathogens (Blanc et al., 2020; Bernaquez
et al., 2021). For example, a previous comparison conducted
by Bernaquez et al. (2021) of WGS-based subtyping methods
was applied to a dataset of Shigella isolates and, using linear
regression, demonstrated that the amount of allelic differences
identified by all MLST-based methods for Shigella flexneri was
consistent in comparison to the number of high quality single-
nucleotide variants (hqSNVs). In our study, while each of the
three methods [cgMLST, wgMLST (chrom) and hqSNP] showed
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FIGURE 4

Baker’s gamma indices (A) and cophenetic correlation coefficients (B) for outbreak tanglegrams.

high concordance using linear regression, hqSNP was found to
be slightly more discriminating than the allele-based approaches,
in that there were slightly lower allele differences per hqSNP
difference observed in the slopes of the trend lines. This finding is
foreseeable, as hqSNP does not depend on a pre-defined scheme;
thus SNPs in genomic regions not included in the cgMLST scheme
may be detected.

In this study, using the wgMLST (all loci) scheme yielded
some discrepancies in allele difference ranges, where for two
outbreaks, wgMLST (all loci) allele differences were much higher
than the number of pairwise cgMLST or wgMLST (chrom)

differences. This discrepancy was also reflected in a previous
analysis conducted by Weigand et al. (2021) that showed that while
cgMLST and wgMLST pairwise allele differences were concordant
among a dataset of Bordetella pertussis isolates, wgMLST identified
more allelic differences among isolates, reflecting the increased
resolution provided by the additional loci, as expected. In the
present study, for the two discrepant outbreaks, the larger allele
difference range was attributed to one or more isolate sequences
that extended the wgMLST (all loci) allele differences beyond
cgMLST differences, indicating that the additional differences likely
occurred outside of the core genome loci. Indeed, we found
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FIGURE 5

K-means analysis results for one representative outbreak (outbreak 03) using cgMLST, wgMLST (chrom), and hqSNP pairwise genomic differences.
Top row: hierarchical clustering results of the dataset show partitioning of outbreak (blue) isolate sequences and sporadic (orange) isolate
sequences. Bottom row: elliptical cluster plots show outbreak (blue) and sporadic (orange) isolates plotted separately on a two-dimensional plane,
with ellipses fit to the points in the two clusters. On elliptical plots, the sum of values on the x and y-axis scales indicate that a principle component
analysis (Ding and He, 2004) accounts for 93.0% (cgMLST), 89.8% [wgMLST(chrom)], and 92.1% (hqSNP) of variation.

that for both discrepant outbreaks in our study, the enhanced
discrimination of wgMLST using all loci over cgMLST or wgMLST
(chrom) was due to some allele differences that were aligned to
plasmid loci in one or more isolate. This observation was also
seen in Bernaquez et al.’s (2021) study, where mobile genetic
element (MGE)-encoded loci caused inflated genetic variation
and discrepant phylogenies for some Shigella sonnei outbreaks
via wgMLST. In our study, this inflated genetic variation was
not observed using hqSNP analysis because these differences
likely occurred in plasmid regions that were masked. In a
study conducted by Alikhan et al. (2018) a dataset of over
1,000 Salmonella Agona genomes from EnteroBase showed more
similarity between cgMLST and SNP phylograms than when
wgMLST was used, and recommends using cgMLST instead of
wgMLST for epidemiological purposes due to the volatility of
the accessory genome. Both the present study and the previous
studies demonstrated that core genome-based subtyping methods
were more phylogenetically consistent and epidemiologically
concordant when compared to whole genome-based methods that
incorporate all loci, due to their exclusion of genetic variation in the
accessory genome.

This analysis provided a visual and statistical phylogenomic
comparison of various WGS-based subtyping methods in terms
of clustering outbreak and non-outbreak/sporadic isolates. hqSNP
and allele-based [cgMLST and wgMLST(chrom)] subtyping
methods clustered outbreak and sporadic isolates with similar
composition when phylogenies were compared side-by-side
through tanglegrams. This concordance was supported by

two different statistical indices, the Baker’s gamma index and
cophenetic correlation coefficient, where for all outbreaks and
across all subtyping methods, BGI values were between 0.60
and 1.00, indicative of statistically similar tree topology that
can subsequently be interpreted as strong concordance between
workflows (Baker, 1974). Additionally, the cophenetic correlation
coefficient was ≥ 0.97 for all outbreaks, demonstrating faithful
preservation of the original pairwise genomic distances within
the dendrograms (Saraçli et al., 2013). These results conform
to what has been observed in previous studies, where visual
phylogenomic comparisons concluded that outbreak isolates
delimited by both SNP and MLST-based approaches were similarly
grouped using phylogenetic trees (Pearce et al., 2018; Jagadeesan
et al., 2019; Coipan et al., 2020; Bernaquez et al., 2021;
Joseph et al., 2023). Minor differences in cophenetic correlation
coefficients between allele and hqSNP-based dendrograms may
reflect the differences in clustering techniques used, as allele-
based dendrograms were created using UPGMA and SNP-
based dendrograms were created using the maximum likelihood
method.

To enhance this study, an objective approach, K-means
analysis, was used to compare the clustering results of the three
different WGS-based subtyping methods as a form of external
cluster validation. This was an unsupervised machine learning
methodology that was applied to a combined dataset of pairwise
genomic differences from outbreak and sporadic isolates to
measure their goodness of separation. This technique demonstrated
that regardless of the subtyping method used (SNP or allele-based),
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the combined outbreak and sporadic isolate datasets could be
successfully partitioned into two distinct groups. Average silhouette
widths were assessed for the outbreak and sporadic groups, where
silhouette widths can range from –1.0 to 1.0; a higher value
indicating that outbreak sequences were well matched within
their own outbreak group and poorly matched to sporadic isolate
sequences. This finding parallels a previous analysis that showed
that by using an unsupervised machine learning methodology, it
is possible to detect an optimal number of clusters that separate
outbreak from non-outbreak isolates based on the consensus of
the silhouette index, or silhouette score (Coipan et al., 2020). In
the present study, the differentiation of outbreak and sporadic
isolate sequences was seen across multiple outbreaks of various
sizes and serotypes, whereas in previous studies this approach
has been limited to a single well-characterized outbreak; however,
the overall outcome is consistent across studies. This technique
provided a way to measure cluster delineation and goodness of
clustering across WGS-based subtyping methods in an objective
manner.

Allele-based subtyping methods are well suited to surveillance
and outbreak detection since allele calls are stable per isolate,
allowing for rapid comparisons once allele calling is performed.
Often for hqSNP analyses, parts if not all of the SNP calling
pipeline need to be repeated to include additional isolates
in an analysis, and this can be labor intensive and delay
characterizing new isolates as part of an outbreak. Additionally,
performing and interpreting hqSNP analyses requires selecting
an appropriate reference sequence and certain technical expertise.
However, a disadvantage of allele-based methods is that a
sequence error in a locus may lead to an error in allele
identification, while SNP approaches can use a variety of filtering
methods (for example NCBI’s density filtering10 in the SNP
tree construction). Additionally, we note that with allele-based
subtyping methods, there may be a need to update the schema
(i.e., add additional loci) as new sequences are added to the
database over time.

As observed in this study as well as in previous analyses,
cgMLST may be preferred among allele-based methods for cluster
delineation of Salmonella isolates due to potential expansions
in allele ranges that can occur when using a wgMLST scheme
that incorporates accessory or plasmid genome loci. Finally,
core genome schemes may be optimal because they enable high
resolution within a species which can be used as the foundation of
a stable nomenclature that ensures interlaboratory reproducibility
and comparisons (Maiden et al., 2013; Moura et al., 2016; Zhou
et al., 2017; Joseph et al., 2023). The utility of core genome
schemes has been previously demonstrated in other studies that
have highlighted the emerging influence of WGS in modern-day
outbreak investigations (Cody et al., 2017; Blanc et al., 2020;
Joseph et al., 2020; Zhou et al., 2020; Abdel-Glil et al., 2021).
Adding to these known advantages, the present study confirms
that a cgMLST allele scheme built from EnteroBase can be
successfully used for routine surveillance of S. enterica with
the same epidemiologic concordance as SNP typing methods,
facilitating rapid and harmonized genomic comparisons across
public health networks.

10 https://www.ncbi.nlm.nih.gov/pathogens/faq
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While this study confirms that the cgMLST allele scheme
used by PulseNet USA can be successfully used for routine
surveillance of S. enterica, we note that many public health
networks have been successful in using validated SNP-based
cluster detection methods for foodborne disease surveillance.
For example, NCBI’s Pathogen Detection Project (PDP) (see
text footnote 10), a centralized system that integrates sequence
data from bacterial pathogens, quickly clusters related pathogen
genome sequences submitted by US and international public
health agencies to identify potential disease clusters and possible
transmission chains. For each cluster, a phylogenetic tree is
reconstructed from the SNPs for that cluster by using the maximum
compatibility criteria (Cherry, 2017). The goal of NCBI’s PDP is
to identify closely related isolates to aid in real-time outbreak
investigations. Since NCBI facilitates the integration of clinical,
food, and environmental data using SNP-based trees, which are
used for regulatory purposes, PulseNet participating-laboratories
must commit to submitting WGS data to NCBI in real-time.
A future study could compare in more detail the SNP pipeline used
by the US Food and Drug Administration (FDA)’s Center for Food
Safety and Applied Nutrition (CFSAN) to the allele-based methods
described in this study, as public health researchers may benefit
from a more detailed comparison of the two heavily used, well-
characterized analytical pipelines. Additionally, our study could
have been enhanced by comparing each outbreak cluster to its
corresponding SNP cluster on NCBI’s PDP, noting similarities
and/or differences in cluster size, inclusivity and exclusivity of
isolates, and pairwise distances between clinical and non-clinical
samples.

This study has some limitations. One limitation is that sporadic
isolate datasets for outbreaks caused by more rare serotypes
contained fewer isolates, due to data availability. Additionally, for
outbreaks caused by more common serotypes (i.e., Enteritidis,
Typhimurium), we did not capture all sporadic isolates that
met matching criteria; rather, we limited the sporadic isolate
datasets to a selection of contemporary isolates that had not
been associated with any previously detected and investigated
disease clusters. In true application, the number of sporadic
isolates should exceed the number of outbreak isolates by a
certain factor, depending on serotype commonality; thus, our
datasets may not reflect the true ratio of outbreak versus sporadic
isolates in the population. A limitation of the clustering phylogeny
comparison is that for allele-based methods, UPGMA was used
as the clustering technique and for SNP-based dendrograms,
the maximum likelihood method was used. This may have
resulted in minor differences in cophenetic correlation coefficients
across outbreaks but did not change the overall interpretation.
Additionally, we acknowledge that the genetic distances resulting
from the hierarchical clustering techniques were fitted to reflect
the linkage method used. A limitation of the K-means analysis
is that only one method was used to determine the optimal
number of groups in the combined outbreak and sporadic
isolate datasets, namely, the silhouette method. Other methods
used for partitioning datasets into groups or clusters, such
as the elbow method and gap static method, were not used
in this study primarily because the results we obtained using
the silhouette method were not ambiguous, and because the
silhouette method has the added advantage of identifying outliers

(if present) in a cluster11 (Shutaywi and Kachouie, 2021).
Finally, the K-means exercise could be repeated in a future
study using a larger set of sporadic isolate sequences per
outbreak.

Conclusion

Using nine outbreaks with well-characterized sources, this
study confirms that the allele schemes built into the PulseNet
Salmonella national BioNumerics database provide ideal resolution
for detecting outbreak clusters caused by a variety of sources
and serotypes. hqSNP and MLST-based [cgMLST and wgMLST
(chrom)] analysis of WGS data was highly concordant with
epidemiologic information linking cases in Salmonella outbreaks
and differentiating sporadic isolates that were matched by serotype
or 7-gene MLST to outbreak isolates. While pairwise differences
were highly concordant between hqSNP, cgMLST, and wgMLST
(chrom) analyses, the results showed some discrepancies when
wgMLST (all loci) were used, as expected. One explanation
for these discrepancies is that the wgMLST (all loci) scheme
incorporates the accessory genome loci, including plasmids and
mobile genetic elements, while the cgMLST scheme is based on
a subset of core loci found to be present in ≥ 98% of the
representative Salmonella genomes used to build the EnteroBase
allele scheme (Achtman et al., 2012). The objective K-means
methodology further validates the ability of the allele schemes
currently used within PulseNet, particularly for differentiating
outbreak and sporadic isolate sequences. While this study shows
that allele-based methods can be reliably used for cluster detection,
we emphasize that any cluster detection method should be used
in conjunction with epidemiologic data gathered from a paired
investigation. The findings of this study are substantiated by
results of similar preceding studies and should provide public
health researchers with additional confidence in using allele-
based methods for surveillance of Salmonella enterica outbreak
clusters.
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