237 research outputs found

    Second generation planet formation in NN Serpentis?

    Full text link
    In this paper, we study the general impact of stellar mass-ejection events in planetary orbits in post-common envelope binaries with circumbinary planets like those around NN Serpentis. We discuss a set of simple equations that determine upper and lower limits for orbital expansion and investigate the effect of initial eccentricity. We deduce the range of possible semi-major axes and initial eccentricity values of the planets prior to the common-envelope event. In addition to spherically-symmetric mass-ejection events, we consider planetary dynamics under the influence of an expanding disk. In order to have survived, we suggest that the present planets in NN Ser must have had semi-major axes  ∌> 10\,{}^>_{\sim}\, 10 AU and high eccentricity values which is in conflict with current observations. Consequently, we argue that these planets were not formed together with their hosting stellar system, but rather originated from the fraction of matter of the envelope that remained bound to the binary. According to the cooling age of the white dwarf primary of 10610^6 yr, the planets around NN Ser might be the youngest known so far and open up a wide range of further study of second generation planet formation.Comment: 4 pages, 2 figure

    The Importance of Teaching and Learning Patterning in Early Math Education

    Get PDF
    This literature review explores the importance of patterning in early math education. Patterning skills are a unique predictor of future success in mathematics. With the Common Core not addressing patterning as a standard in early math education, many educators have come to believe that the importance of patterning is not significant. However, past and present research studies have yielded convincing results that demonstrate the importance of including patterning in early math curriculums. Incorporating patterning into young students\u27 math experiences requires several specific instructional strategies to optimize the benefits of learning patterning skills

    The spectral type of CHS7797 - an intriguing very low mass periodic variable in the Orion Nebula Cluster

    Get PDF
    We present the spectroscopic characterization of the unusual high-amplitude very low mass pre-main-sequence periodic variable CHS7797. This study is based on optical medium-resolution (R=2200) spectroscopy in the 6450-8600 A range, carried out with GMOS-GEMINI-S in March 2011. Observations of CHS7797 have been carried out at two distinct phases of the 17.8d period, namely at maximum and four days before maximum. Four different spectral indices were used for the spectral classification at these two phases, all of them well-suited for spectral classification of young and obscured late M dwarfs. In addition, the gravity-sensitive NaI (8183/8195 A) and KI (7665/7699 A) doublet lines were used to confirm the young age of CHS7797. From the spectrum obtained at maximum light we derived a spectral type (SpT) of M6.05, while for the spectrum taken four days before maximum the derived SpT is M5.75. The derived SpTs confirm that CHS7797 has a mass in the stellar-substellar boundary mass range. In addition, the small differences in the derived SpTs at the two observed phases may provide indirect hints that CHS7797 is a binary system of similar mass components surrounded by a tilted circumbinary disk, a system similar to KH15D.Comment: 6 pages, accepted for publication A&

    Synthetic NLTE accretion disc spectra for the dwarf nova SS Cyg during an outburst cycle

    Full text link
    Dwarf nova outbursts result from enhanced mass transport through the accretion disc of a cataclysmic variable system. We assess the question of whether these outbursts are caused by an enhanced mass transfer from the late-type main sequence star onto the white dwarf (so-called mass transfer instability model, MTI) or by a thermal instability in the accretion disc (disc instability model, DIM). We compute non-LTE models and spectra of accretion discs in quiescence and outburst and construct spectral time sequences for discs over a complete outburst cycle. We then compare our spectra to published optical spectroscopy of the dwarf nova SS Cygni. In particular, we investigate the hydrogen and helium line profiles that are turning from emission into absorption during the rise to outburst. The evolution of the hydrogen and helium line profiles during the rise to outburst and decline clearly favour the disc-instability model. Our spectral model sequences allow us to distinguish inside-out and outside-in moving heating waves in the disc of SS Cygni, which can be related to symmetric and asymmetric outburst light curves, respectively.Comment: 8 pages, 8 figures; accepted to A&

    Nonlinear Outcome of Gravitational Instability in Disks with Realistic Cooling

    Full text link
    We consider the nonlinear outcome of gravitational instability in optically thick disks with a realistic cooling function. We use a numerical model that is local, razor-thin, and unmagnetized. External illumination is ignored. Cooling is calculated from a one-zone model using analytic fits to low temperature Rosseland mean opacities. The model has two parameters: the initial surface density Sigma_0 and the rotation frequency Omega. We survey the parameter space and find: (1) The disk fragments when t_c,eff Omega = 1, where t_c,eff is an effective cooling time defined as the average internal energy of the model divided by the average cooling rate. This is consistent with earlier results that used a simplified cooling function. (2) The initial cooling time t_c0 or a uniform disk with Q = 1 can differ by orders of magnitude from t_c,eff in the nonlinear outcome. The difference is caused by sharp variations in the opacity with temperature. The condition t_c0 Omega = 1 therefore does not necessarily indicate where fragmentation will occur. (3) The largest difference between t_c,eff and t_c0 is near the opacity gap, where dust is absent and hydrogen is largely molecular. (4) In the limit of strong illumination the disk is isothermal; we find that an isothermal version of our model fragments for Q < 1.4. Finally, we discuss some physical processes not included in our model, and find that most are likely to make disks more susceptible to fragmentation. We conclude that disks with t_c,eff Omega < 1 do not exist.Comment: 30 pages, 12 figure

    Rapid variability of accretion in AM Herculis

    Get PDF
    We present the last pointed observation of AM Her carried out during the life of the BeppoSAX satellite. It was bright at the beginning of the observation, but dropped to the lowest X-ray level ever observed so far. The X-ray emission during the bright period is consistent with accretion occurring onto the main pole of the magnetized white dwarf. The rapid change from the active state to the low deep state indicates a drop by a factor of 17 in the accretion rate and hence that accretion switched-off. The short timescale (less than one hour) of this variation still remains a puzzle. Optical photometry acquired simultaneousy during the low state shows that the white dwarf remains heated, although a weak emission from the accretion stream could be still present. Cyclotron radiation, usually dominating the V and R bands, is negligible thus corroborating the possibility that AM Her was in an off-accretion state. The X-ray emission during the inactive state is consistent with coronal emission from the secondary late type star.Comment: 6 pages A&A-Latex, 6 Figures, accepted for publication in A&

    Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga

    Full text link
    We present high resolution optical spectra obtained with the HIRES spectrograph on the Keck I telescope of low mass T Tauri stars and brown dwarfs (LMTTs) in Taurus-Auriga. Of particular interest is the previously classified "continuum T Tauri star" GM Tau, which has a spectral type of M6.5 and a mass just below the stellar/substellar boundary. None of the LMTTs in Taurus are rapidly rotating (vsini < 30 km/s), unlike low mass objects in Orion. Many of the slowly rotating, non-accreting stars and brown dwarfs exhibit prominent H-alpha emission (EWs of 3 - 36 A), indicative of active chromospheres. We demonstrate empirically that the full-width at 10% of the H-alpha emission profile peak is a more practical and possibly more accurate indicator of accretion than either the equivalent width of H-alpha or optical veiling: 10%-widths > 270 km/s are classical T Tauri stars (i.e. accreting), independent of stellar spectral type. Although LMTTs can have accretion rates comparable to that of more typical, higher-mass T Tauri stars (e.g. K7-M0), the average mass accretion rate appears to decrease with decreasing mass. The diminished frequency of accretion disks for LMTTs, in conjunction with their lower, on average, mass accretion rates, implies that they are formed with less massive disks than higher-mass T Tauri stars. The radial velocities, circumstellar properties and known binaries do not support the suggestion that many of the lowest mass members of Taurus have been ejected from higher stellar density regions within the cloud. Instead, LMTTs appear to have formed and are evolving in the same way as higher-mass T Tauri stars, but with smaller disks and shorter disk lifetimes.Comment: 27 pages, plus 8 figures, accepted for publication in Ap

    VLT observations of GRB 990510 and its environment

    Get PDF
    We present BVRI photometry and spectrophotometry of GRB990510 obtained with the ESO VLT/Antu telescope during the late decline phase. Between days 8 and 29 after the burst, the afterglow faded from R=24.2 to ~26.4. The spectral flux distribution and the light curve support the interpretation of the afterglow as synchrotron emission from a jet. The light curve is consistent with the optical transient alone but an underlying SN with maximum brightness R>27.4 or a galaxy with R>27.6 (3-sigma upper limits) cannot be ruled out. To a 5-sigma detection threshold of R=26.1, no galaxy is found within 6'' of the transient. A very blue V~24.5 extended object which may qualify as a starburst galaxy is located 12'' SE, but at unknown redshift.Comment: 5 pages A&A Latex, accepted for publication in A&A Letter
    • 

    corecore