38 research outputs found

    Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter

    No full text
    Metallothioneins (MTs) are small cysteine-rich proteins whose structure is conserved from fungi to man. MTs strongly bind heavy metals, notably zinc, copper and cadmium. Upon exposure of cells to heavy metal and other adverse treatments, MT gene transcription is strongly enhanced. Metal induction is mediated by several copies of a 15 bp consensus sequence (metal-responsive element, MRE) present in the promoter region of MT genes. We and others have demonstrated the presence of an MRE-binding factor in HeLa cell nuclear extracts. We found that this factor, termed MTF-1 (MRE-binding transcription factor) is inactivated/reactivated in vitro by zinc withdrawal/addition. Here we report that the amounts of MTF-1-DNA complexes are elevated several-fold in zinc-treated cells, as measured by bandshift assay. We have also cloned the cDNA of mouse MTF-1, a 72.5 kDa protein. MTF-1 contains six zinc fingers and separate transcriptional activation domains with high contents of acidic and proline residues. Ectopic expression of MTF-1 in primate or rodent cells strongly enhances transcription of a reporter gene that is driven by four consensus MREd sites, or by the complete mouse MT-I promoter, even at normal zinc levels

    Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter

    No full text
    Metallothioneins (MTs) are small cysteine-rich proteins whose structure is conserved from fungi to man. MTs strongly bind heavy metals, notably zinc, copper and cadmium. Upon exposure of cells to heavy metal and other adverse treatments, MT gene transcription is strongly enhanced. Metal induction is mediated by several copies of a 15 bp consensus sequence (metal-responsive element, MRE) present in the promoter region of MT genes. We and others have demonstrated the presence of an MRE-binding factor in HeLa cell nuclear extracts. We found that this factor, termed MTF-1 (MRE-binding transcription factor) is inactivated/reactivated in vitro by zinc withdrawal/addition. Here we report that the amounts of MTF-1-DNA complexes are elevated several-fold in zinc-treated cells, as measured by bandshift assay. We have also cloned the cDNA of mouse MTF-1, a 72.5 kDa protein. MTF-1 contains six zinc fingers and separate transcriptional activation domains with high contents of acidic and proline residues. Ectopic expression of MTF-1 in primate or rodent cells strongly enhances transcription of a reporter gene that is driven by four consensus MREd sites, or by the complete mouse MT-I promoter, even at normal zinc levels

    Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter

    No full text
    Metallothioneins (MTs) are small cysteine-rich proteins whose structure is conserved from fungi to man. MTs strongly bind heavy metals, notably zinc, copper and cadmium. Upon exposure of cells to heavy metal and other adverse treatments, MT gene transcription is strongly enhanced. Metal induction is mediated by several copies of a 15 bp consensus sequence (metal-responsive element, MRE) present in the promoter region of MT genes. We and others have demonstrated the presence of an MRE-binding factor in HeLa cell nuclear extracts. We found that this factor, termed MTF-1 (MRE-binding transcription factor) is inactivated/reactivated in vitro by zinc withdrawal/addition. Here we report that the amounts of MTF-1-DNA complexes are elevated several-fold in zinc-treated cells, as measured by bandshift assay. We have also cloned the cDNA of mouse MTF-1, a 72.5 kDa protein. MTF-1 contains six zinc fingers and separate transcriptional activation domains with high contents of acidic and proline residues. Ectopic expression of MTF-1 in primate or rodent cells strongly enhances transcription of a reporter gene that is driven by four consensus MREd sites, or by the complete mouse MT-I promoter, even at normal zinc levels

    Tissue-specific expression of a FMR1/beta-galactosidase fusion gene in transgenic mice.

    Full text link
    Fragile X syndrome is one of the most common genetic causes of mental retardation, yet the mechanisms controlling expression of the fragile X mental retardation gene FMR1 are poorly understood. To identify sequences regulating FMR1 transcription, transgenic mouse lines were established using a fusion gene consisting of an E.coli beta-galactosidase reporter gene (lacZ) linked to a 2.8 kb fragment spanning the 5'-region of FMR1. Five transgenic mouse lines showed lacZ expression in brain, in particular in neurons of the hippocampus and the granular layer of the cerebellum. Expression of the reporter gene was also detected in Leydig cells and spermatogonia in the testis, in many epithelia of adult mice, and in the two other steroidogenic cell types, adrenal cortex cells and ovarian follicle cells. Embryonic tissues which showed strong activity of the reporter gene included the telencephalon, the genital ridge, and the notochord. This expression pattern closely resembles the endogenous one, indicating that the 5' FMR1 gene promoter region used in this study contains most cis-acting elements regulating FMR1 transcription

    Spondylo-ocular syndrome: a new entity with crystalline lens malformation, cataract, retinal detachment, osteoporosis, and platyspondyly.

    No full text
    PURPOSE: To define a new clinical entity in a consanguineous family with six children affected by a spondylo-ocular syndrome, including cataract, crystalline lens malformation, retinal detachment, osteoporosis, and platyspondyly. To analyze candidate genes of connective tissue disorders as a possible underlying disorder and to demonstrate especially the ocular phenotype. DESIGN: Observational case series. METHODS: Consanguineous parents, one unaffected sibling and five affected children with clinical features of spondylo-ocular syndrome, were demonstrated. Clinical examination, radiologic, laboratory, and cytogenetic as well as moleculargenetic analyses were performed. The segregation of flanking marker alleles of three collagen genes and the interval for osteoporosis-pseudoglioma syndrome were analyzed. Two microsatellite markers located within Pax6CA/GT region were tested for homozygosity. RESULTS: On laboratory investigation a normal excretion of amino acids, mucopolysaccharides, and oligosaccharides could be found. The karyotype was normal. Complete radiologic examination in one index patient revealed a generalized moderate osteoporosis, platyspondyly with fish bone appearance, and greatly enlarged intervertebral spaces. The candidate genes known to be in Stickler syndrome as well as linkage to the osteoporosis-pseudoglioma syndrome candidate region could be excluded. None of the affected showed homozygosity for the Pax6 microsatellite markers. CONCLUSIONS: We conclude that the phenotype and the clinical features in this family defines a new Mendelian disorder. It remains to be seen what kind of molecule shared by eye and bone is involved
    corecore