29 research outputs found

    Increased Activity of Cell Surface Peptidases in HeLa Cells Undergoing UV-Induced Apoptosis Is Not Mediated by Caspase 3

    Get PDF
    We have previously shown that in HeLa cells treated with a variety of agents there is an increase in cell surface peptidase (CSP) activity in those cells undergoing apoptosis. The increase in CSP activity observed in UVB-irradiated cells undergoing apoptosis was unaffected when the cultures were treated with the aminopeptidase inhibitor bestatin, and matrix metalloprotease inhibitor BB3103, but greatly enhanced when treated with the caspase 3 inhibitor-DEVD, and reduced in the presence of the poly(ADP-ribose) polymerase (PARP) inhibitor-3-aminobenzamide (3AB). Neither 3AB nor DEVD had an effect on the gross morphology of the apoptotic cells observed under electron microscopy, nor did they have an effect on phosphatidylserine eversion on the cell membrane, or that of PARP cleavage. All the agents except for DEVD had no effect on the level of caspase 3 activity in the cells. The results suggest that other caspases may cleave PARP in these cells. Both 3AB and DEVD treatment reduced the level of actin cleavage seen in the apoptotic cells. The increase in CSP activity observed in cells undergoing UVB-induced apoptosis appears to involve PARP but not caspase 3

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 Ă— coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Dysregulation of the repressive H3K27 trimethylation mark in head and neck squamous cell carcinoma contributes to dysregulated squamous differentiation

    No full text
    Recent studies have reported that epigenetic mechanisms may regulate the initiation and progress of squamous differentiation in normal and transformed keratinocytes. In particular, the role of the repressive H3K27me3 mark in the regulation of squamous differentiation has been prominent. However, there is conflicting literature showing that squamous differentiation may be dependent upon or independent of changes in H3K27me3 status. In this study we have examined the binding of trimethylated H3K27 to the promoters of proliferation or differentiation genes in keratinocytes undergoing squamous differentiation in vitro and in vivo. Initially, we examined the expression levels for EZH1, EZH2, and H3K27me3 in differentiating keratinocytes in vitro and in vivo. We extended this to include H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq). Based on these studies, we could find no evidence for an association between widespread gain or loss of H3K27me3 on the promoters of proliferation-specific or differentiation-specific target genes, respectively, during squamous differentiation in adult human keratinocytes. These data suggest that squamous differentiation may occur independent of regulation by H3K27me3 on proliferation and differentiation genes of normal adult human keratinocytes

    RacGAP1 is a novel downstream effector of E2F7-dependent resistance to doxorubicin and is prognostic for overall survival in squamous cell carcinoma

    No full text
    We have previously shown that E2F7 contributes to drug resistance in head and neck squamous cell carcinoma (HNSCC) cells. Considering that dysregulation of responses to chemotherapy-induced cytotoxicity is one of the major reasons for treatment failure in HNSCC, identifying the downstream effectors that regulate E2F7-dependent sensitivity to chemotherapeutic agents may have direct clinical impact. We used transcriptomic profiling to identify candidate pathways that contribute to E2F7-dependent resistance to doxorubicin. We then manipulated the expression of the candidate pathway using overexpression and knockdown in in vitro and in vivo models of SCC to demonstrate causality. In addition, we examined the expression of E2F7 and RacGAP1 in a custom tissue microarray (TMA) generated from HNSCC patient samples. Transcriptomic profiling identified RacGAP1 as a potential mediator of E2F7-dependent drug resistance. We validated E2F7-dependent upregulation of RacGAP1 in doxorubicin-insensitive SCC25 cells. Extending this, we found that selective upregulation of RacGAP1 induced doxorubicin resistance in previously sensitive KJDSV40. Similarly, stable knockdown of RacGAP1 in insensitive SCC25 cells induced sensitivity to doxorubicin in vitro and in vivo. RacGAP1 expression was validated in a TMA, and we showed that HNSCCs that over-express RacGAP1 are associated with a poorer patient overall survival. Furthermore, E2F7-induced doxorubicin resistance was mediated via RacGAP1-dependent activation of AKT. Finally, we show that SCC cells deficient in RacGAP1 grow slower and are sensitized to the cytotoxic actions of doxorubicin in vivo. These findings identify RacGAP1 overexpression as a novel prognostic marker of survival and a potential target to sensitize SCC to doxorubicin

    A novel E2F/sphingosine kinase 1 axis regulates anthracycline response in squamous cell carcinoma

    No full text
    Purpose: Head and neck squamous cell carcinomas (HNSCC) are frequently drug resistant and have a mortality rate of 45%. We have previously shown that E2F7 may contribute to drug resistance in SCC cells. However, the mechanism and pathways involved remain unknown

    Targeting the XPO1-dependent nuclear export of E2F7 reverses anthracycline resistance in head and neck squamous cell carcinomas

    No full text
    Patient mortality rates have remained stubbornly high (40%) for the past 35 years in head and neck squamous cell carcinoma (HNSCC) due to inherent or acquired drug resistance. Thus, a critical issue in advanced SCC is to identify and target the mechanisms that contribute to therapy resistance. We report that the transcriptional inhibitor, E2F7, is mislocalized to the cytoplasm in >80% of human HNSCCs, whereas the transcriptional activator, E2F1, retains localization to the nucleus in SCC. This results in an imbalance in the control of E2F-dependent targets such as , which is derepressed and drives resistance to anthracyclines in HNSCC. Specifically, we show that (i) E2F7 is subject to exportin 1 (XPO1)-dependent nuclear export, (ii) E2F7 is selectively mislocalized in most of SCC and multiple other tumor types, (iii) mislocalization of E2F7 in HNSCC causes derepression of Sphk1 and drives anthracycline resistance, and (iv) anthracycline resistance can be reversed with a clinically available inhibitor of XPO1, selinexor, in xenotransplant models of HNSCC. Thus, we have identified a strategy to repurpose anthracyclines for use in SCC. More generally, we provide a strategy to restore the balance of E2F1 (activator) and E2F7 (inhibitor) activity in cancer
    corecore