84 research outputs found

    Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.

    Get PDF
    In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373

    High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli

    Get PDF
    BACKGROUND: The realization of hydrogenase-based technologies for renewable H(2) production is presently limited by the need for scalable and high-yielding methods to supply active hydrogenases and their required maturases. PRINCIPAL FINDINGS: In this report, we describe an improved Escherichia coli-based expression system capable of producing 8-30 mg of purified, active [FeFe] hydrogenase per liter of culture, volumetric yields at least 10-fold greater than previously reported. Specifically, we overcame two problems associated with other in vivo production methods: low protein yields and ineffective hydrogenase maturation. The addition of glucose to the growth medium enhances anaerobic metabolism and growth during hydrogenase expression, which substantially increases total yields. Also, we combine iron and cysteine supplementation with the use of an E. coli strain upregulated for iron-sulfur cluster protein accumulation. These measures dramatically improve in vivo hydrogenase activation. Two hydrogenases, HydA1 from Chlamydomonas reinhardtii and HydA (CpI) from Clostridium pasteurianum, were produced with this improved system and subsequently purified. Biophysical characterization and FTIR spectroscopic analysis of these enzymes indicate that they harbor the H-cluster and catalyze H(2) evolution with rates comparable to those of enzymes isolated from their respective native organisms. SIGNIFICANCE: The production system we describe will facilitate basic hydrogenase investigations as well as the development of new technologies that utilize these prolific H(2)-producing enzymes. These methods can also be extended for producing and studying a variety of oxygen-sensitive iron-sulfur proteins as well as other proteins requiring anoxic environments

    Enhanced oxygen-tolerance of the full heterotrimeric membrane-bound [NiFe]-hydrogenase of ralstonia eutropha.

    Get PDF
    Hydrogenases are oxygen-sensitive enzymes that catalyze the conversion between protons and hydrogen. Water-soluble subcomplexes of membrane-bound [NiFe]-hydrogenases (MBH) have been extensively studied for applications in hydrogen-oxygen fuel cells as they are relatively tolerant to oxygen, although even these catalysts are still inactivated in oxidative conditions. Here, the full heterotrimeric MBH of Ralstonia eutropha, including the membrane-integral cytochrome b subunit, was investigated electrochemically using electrodes modified with planar tethered bilayer lipid membranes (tBLM). Cyclic voltammetry and chronoamperometry experiments show that MBH, in equilibrium with the quinone pool in the tBLM, does not anaerobically inactivate under oxidative redox conditions. In aerobic environments, the MBH is reversibly inactivated by O2, but reactivation was found to be fast even under oxidative redox conditions. This enhanced resistance to inactivation is ascribed to the oligomeric state of MBH in the lipid membrane

    Energy and photoinduced electron transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex

    No full text
    Functional mimics of a photosynthetic antenna-reaction center complex comprising five bis(phenylethynyl)anthracene antenna moieties and a porphyrin-fullerene dyad organized by a central hexaphenylbenzene core have been prepared and studied spectroscopically. The molecules successfully integrate singlet-singlet energy transfer and photoinduced electron transfer. Energy transfer from the five antennas to the porphyrin occurs on the picosecond time scale with a quantum yield of 1.0. Comparisons with model compounds and theory suggest that the Foster mechanism plays a major role in the extremely rapid energy transfer, which occurs at rates comparable to those seen in some photosynthetic antenna systems. A through-bond, electron exchange mechanism also contributes. The porphyrin first excited singlet state donates an electron to the attached fullerene to yield a P.+-C-60(.-) charge-separated state, which has a lifetime of several nanoseconds. The quantum yield of charge separation based on light absorbed by the antenna chromophores is 80% for the free base molecule and 96% for the zinc analogue

    Energy and photoinduced electron transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex

    No full text
    Functional mimics of a photosynthetic antenna-reaction center complex comprising five bis(phenylethynyl)anthracene antenna moieties and a porphyrin-fullerene dyad organized by a central hexaphenylbenzene core have been prepared and studied spectroscopically. The molecules successfully integrate singlet-singlet energy transfer and photoinduced electron transfer. Energy transfer from the five antennas to the porphyrin occurs on the picosecond time scale with a quantum yield of 1.0. Comparisons with model compounds and theory suggest that the Foster mechanism plays a major role in the extremely rapid energy transfer, which occurs at rates comparable to those seen in some photosynthetic antenna systems. A through-bond, electron exchange mechanism also contributes. The porphyrin first excited singlet state donates an electron to the attached fullerene to yield a P.+-C-60(.-) charge-separated state, which has a lifetime of several nanoseconds. The quantum yield of charge separation based on light absorbed by the antenna chromophores is 80% for the free base molecule and 96% for the zinc analogue

    All-photonic molecular half-adder

    No full text
    One molecule acts as both an AND and an XOR Boolean logic gate that share the same two photonic inputs. The molecule comprises a half-adder, adding two binary digits with only light as inputs and outputs, and consists of three covalently linked photochromic moieties, a spiropyran and two quinolinederived dihydroindolizines. The AND function is based on the absorption properties of the molecule, whereas the XOR function is based on an off-on-off response of the fluorescence to the inputs that results from interchromophore excited-state quenching interactions. The half-adder is simple to operate and can be cycled many times
    • …
    corecore