293 research outputs found

    Self heating and nonlinear current-voltage characteristics in bilayer graphene

    Get PDF
    We demonstrate by experiments and numerical simulations that the low-temperature current-voltage characteristics in diffusive bilayer graphene (BLG) exhibit a strong superlinearity at finite bias voltages. The superlinearity is weakly dependent on doping and on the length of the graphene sample. This effect can be understood as a result of Joule heating. It is stronger in BLG than in monolayer graphene (MLG), since the conductivity of BLG is more sensitive to temperature due to the higher density of electronic states at the Dirac point.Comment: 9 pages, 7 figures, REVTeX 4.

    Charge sensitivity of the Inductive Single-Electron Transistor

    Get PDF
    We calculate the charge sensitivity of a recently demonstrated device where the Josephson inductance of a single Cooper-pair transistor is measured. We find that the intrinsic limit to detector performance is set by oscillator quantum noise. Sensitivity better than 10−610^{-6}e/Hz/\sqrt{\mathrm{Hz}} is possible with a high QQ-value ∼103\sim 10^3, or using a SQUID amplifier. The model is compared to experiment, where charge sensitivity 3×10−53 \times 10^{-5}e/Hz/\sqrt{\mathrm{Hz}} and bandwidth 100 MHz are achieved.Comment: 3 page

    Cyclostationary shot noise in mesoscopic measurements

    Get PDF
    We discuss theoretically a setup where a time-dependent current consisting of a DC bias and two sinusoidal harmonics is driven through a sample. If the sample exhibits current-dependent shot noise, the down-converted noise power spectrum varies depending on the local-oscillator phase of the mixer. The theory of this phase-dependent noise is applied to discuss the measurement of the radio-frequency single-electron transistor. We also show that this effect can be used to measure the shot noise accurately even in nonlinear high-impedance samples.Comment: 3 pages, 2 figure

    Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling

    Get PDF
    We have studied electronic conductivity and shot noise of bilayer graphene (BLG) sheets at high bias voltages and low bath temperature T0=4.2T_0=4.2 K. As a function of bias, we find initially an increase of the differential conductivity, which we attribute to self-heating. At higher bias, the conductivity saturates and even decreases due to backscattering from optical phonons. The electron-phonon interactions are also responsible for the decay of the Fano factor at bias voltages V>0.1V>0.1 V. The high bias electronic temperature has been calculated from shot noise measurements, and it goes up to ∼1200\sim1200 K at V=0.75V=0.75 V. Using the theoretical temperature dependence of BLG conductivity, we extract an effective electron-optical phonon scattering time τe−op\tau_{e-op}. In a 230 nm long BLG sample of mobility μ=3600\mu=3600 cm2^2V−1^{-1}s−1^{-1}, we find that τe−op\tau_{e-op} decreases with increasing voltage and is close to the charged impurity scattering time τimp=60\tau_{imp}=60 fs at V=0.6V=0.6 V.Comment: 7 pages, 7 figures. Extended version of the high bias part of version 1. The low bias part is discussed in arXiv:1102.065

    Gate-controlled superconductivity in diffusive multiwalled carbon nanotube

    Get PDF
    We have investigated electrical transport in a diffusive multiwalled carbon nanotube contacted using superconducting leads made of Al/Ti sandwich structure. We find proximity-induced superconductivity with measured critical currents up to I_cm = 1.3 nA, tunable by gate voltage down to 10 pA. The supercurrent branch displays a finite zero bias resistance which varies as R_0 proportional to I_cm^-alpha with alpha=0.74. Using IV-characteristics of junctions with phase diffusion, a good agreement is obtained with Josephson coupling energy in the long, diffusive junction model of A.D Zaikin and G.F. Zharkov (Sov. J. Low Temp. Phys. 7, 184 (1981)).Comment: 5 pages, 4 figure

    Influence of magnetic impurities on the heat capacity of nuclear spins

    Full text link
    It is found that in a wide range of temperatures and magnetic fields even a small concentration of magnetic impurities in a sample leads to a T−1T^{-1} temperature dependence of the nuclear heat capacity. This effect is related to a nuclear-spin polarization by the magnetic impurities. The parameter that controls the theory turns out not to be the impurity concentration CimpC_{imp} but instead the quantity cimpμe/μnc_{imp} \mu_e / \mu_n, where μe\mu_e and μn\mu_n are the magnetic moments of an electron and a nucleus, respectively. The ratio of μe\mu_e and μn\mu_n is of order of 10310^3

    Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties

    Get PDF
    A three-terminal nanotube device was fabricated from two multiwalled nanotubes by pushing one on top of the other using an atomic-force microscope. The lower nanotube, with gold contacts at both ends, acted as the central island of a single-electron transistor while the upper one functioned as a gate electrode. Coulomb blockade oscillations were observed on the nanotube at sub-Kelvin temperatures. The voltage noise of the nanotube single-electron transistor (SET) was gain dependent as in conventional SETs. The charge sensitivity at 10 Hz was 6×10 exp −4  e/√Hz.Peer reviewe

    Thermal shot noise in top-gated single carbon nanotube field effect transistors

    Get PDF
    The high-frequency transconductance and current noise of top-gated single carbon nanotube transistors have been measured and used to investigate hot electron effects in one-dimensional transistors. Results are in good agreement with a theory of 1-dimensional nano-transistor. In particular the prediction of a large transconductance correction to the Johnson-Nyquist thermal noise formula is confirmed experimentally. Experiment shows that nanotube transistors can be used as fast charge detectors for quantum coherent electronics with a resolution of 13μe/Hz13\mathrm{\mu e/\sqrt{Hz}} in the 0.2-0.8GHz0.8 \mathrm{GHz} band.Comment: 3 pages, 4 figure

    Comment on 'Nucleation of 3He-B from the A Phase: A Cosmic-Ray Effect?'

    Get PDF
    A comment to the article by Leggett, A. J.Peer reviewe
    • …
    corecore