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Charge sensitivity of the inductive single-electron transistor

Mika A. Sillanpéé,a) Leif Roschier, and Pertti J. Hakonen
Low Temperature Laboratory, Helsinki University of Technology, Otakaari 3 A,

Espoo P.O.Box 2200 FIN-02015 HUT, Finland

(Received 1 April 2005; accepted 7 July 2005; published online 22 August 2005)

We calculate the charge sensitivity of a recently demonstrated device where the Josephson
inductance of a single Cooper-pair transistor is measured. We find that the intrinsic limit to detector
performance is set by oscillator quantum noise. Sensitivity better than 107 e/ VHz is possible with
a high Q value ~ 107, or using a superconducting quantum interference device amplifier. The model
is compared to experiment, where charge sensitivity 3 X 1075 e/ VHz and bandwidth 100 MHz are
achieved. © 2005 American Institute of Physics. [DOI: 10.1063/1.2034096]

Remarkable quantum operations have been demon-
strated in the solid state.'™ As exotic quantum measurements
known in quantum optics are becoming adopted for elec-
tronic circuits,4 sensitive and desirably nondestructive mea-
surement of the electric charge is becoming even more im-
portant.

A fast electrometer, the inductive single-electron transis-
tor (L-SET) was demonstrated recently.5 Its operation is
based on gate charge dependence of the Josephson induc-
tance of a single Cooper-pair transistor (SCPT). As com-
pared to the famous tf-SET,® where a high-frequency elec-
trometer is built using the control of single-electron
dissipation, the L-SET has several orders of magnitude lower
dissipation due to the lack of shot noise, and hence also
potentially lower back action.

Charge sensitivity of the sequential tunneling SET has
been thoroughly analyzed. However, little attention has been
paid to the detector performance of the SCPT, probably be-
cause no real electrometer based on SCPT had been demon-
strated until invention of the L-SET. Some claims have been
presented that the performance of SCPT in the L- SET
setup could exceed the shot-noise limit of the rf- SET;
=10"%/ \Hz but no accurate calculations have appeared

In this letter we carry out a sensitivity analysis for
L-SET in the regime of linear response. We find that (ne-
glecting 1/f background charge noise) the intrinsic limit to
detector sensitivity is set, unlike by shot noise of electron
tunneling in a normal SET, by zero-point fluctuations.’”

A SCPT has the single-junction Josephson energy E,,
and the total charging energy E-=e?/(2Cs), where Cs is the
total capacitance of the island. At the lowest energy band the
energy is E,, the effective Josephson energy is E
=Ey(q,¢)/ d¢* and the effective Josephson inductance is
L;=(dy/ 271-)2(Ej)‘1 These have a substantial dependence on
the (reduced) gate charge g=C,V,/e if E;/Ec=<1. Here, ¢ is
the phase across the SCPT. W1th a shunting capacitance C,
SCPT forms a parallel oscillator. We further shunt the oscil-
lator, mainly for practical convenience, by an inductor L
=L ;. Hence we have the resonator as shown in Fig. 1, with
the plasma frequency f,=w,/(2m)=1/(2m)(LxC)">
~1 GHz, where L =LIIL;.

The coupling capacitor, typically C.<<C, allows, in prin-
ciple, for an arbitrarily high loaded quality factor Q;. If di-

YElectronic mail: masillan@cc.hut.f

0003-6951/2005/87(9)/092502/3/$22.50

87, 092502-1

rectly coupled to the feedline, Q; =Z,\VC/L,,~ 1, which is
clearly intolerable. With a coupling capacitor, however, Q;
=1/2Q; in the optimal case (as shown later) of critical cou-
pling Z=Z,. Here, Q; is the internal Q value, which indicates
the dissipation residing within the resonator. The internal
losses can be modeled as being due to a shunting resistor R
as in Fig. 1: Q;=R/(w,Lo).

We consider only the regime of harmonic oscillations of
the phase ¢ around the Josephson potential minimum at ¢
=0, where the detector works by converting charge to reso-
nant frequency A second mode, the “anharmonic” operation
mode” uses nonlinear oscillations of ¢ with an amplitude of
2-10 periods of 2, and the gate charge now affects Q;
through a control of nonlinear dynamics. The anharmonic
mode, which, in fact, yields better sensitivities in experi-
ment, will be discussed in detail in a forthcoming publica-
tion.

The impedance of the L-SET circuit as illustrated in Fig.
lis

1
Z=r-
iw

1 11\
ioC+—— + - +—= . (1)
iol iwL; R

c

The circuit is probed by measuring the voltage reflection
coefficient I'=|T|exp[i arg(T')]=(Z-Z,)/(Z+Z,) to an in-
coming voltage wave of amplitude V| The reflected wave
amplitude is V,=|T'|V,. Here, Z,=50 () is the wave imped-
ance of coaxial lines.

The spectral density of noise power at the output of the
first stage amplifier, referred to the amplifier input, is kBT*,
where the effective temperature T is due to amplifier noise
and sample noise: TN— Tn+Ts. The sample is supposed to be
critically coupled, and hence its noise is like that of a 50-Q)
resistor at the temperature T (note that the Josephson effect

FIG. 1. The L-SET resonator (a), and its equivalent circuit (impedance Z)
coupled to cabling (b).

© 2005 American Institute of Physics
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is a system ground-state property and hence it contributes no
noise). Typically, kzTs<#w,, and thus sample noise is al-
ready in the quantum limit.

The noise of contemporary rf amplifiers, however, re-
mains far from the quantum limit, i.e., 7y>Ts. The best
demonstrated superconducting quantum interference de
vice (SQUID)- based rf amplifiers have reached Ty
~100-200 mK.' Therefore, added noise from the sample
can be safely ignored when analyzing detector performance.

The charge sensitivity for amplitude modulation (AM) of
the rf-SET was calculated in detail in Ref. 11 assuming de-
tection of one sideband. It was assumed that the sensitivity is
limited by the general equivalent noise temperature similarly
as here, and hence the formula applies as such:

0|F|
Sq = VszTNZO VO . (2)

In the linear regime, the best sensitivity of the L-SET is
clearly at the largest acceptable value of V,, where linearity
still holds reasonably well. This is the case when an ac cur-
rent of critical current peak value flows through the SCPT,
and the phase swing is m p-p. Then, voltage across the
SCPT, and the resonator (later we discuss important quantum
corrections to this expression), Vg=|2Zz/(Z+Z,)|V, equals a
universal critical voltage of a Josephson junction,12 Ve
=mhw/(4e)=3 uV at f,=1 GHz. Here, Zg is impedance of
the parallel resonator.

We decompose the derivative in Eq. (2) into terms due to
the circuit and SCPT: d|I'|/dg=(d|T|/dw,)(dw,/ L))
X (dL;/ dq). We define a dimensionless transfer functiong’
=(dL;/ dq)(1/Lyy) scaled according to a minimum (with re-
spect to the gate) of L,. The gate value that yields the maxi-
mum of g’, denoted g, is the optimum gate dc operation
point of the charge detector. In what follows, L; should be
understood as its value at this point. With a given E;/E.
ratio, we compute the values of g and L; numerically from
the SCPT band structure (g is plotted in Fig. 4 in Ref. 5).
If E;/E-<<1, one can use the analytical result Lj,
=(Dy/m)*(1/E,)).

With a general choice of parameters of the tank resona-
tor, Eq. (2) needs to be evaluated numerically. However,
when the system is critically coupled, Z=Z7, a simple ana-
lytical formula can be derived. Numerical calculations of Eq.
(2) over a large range of parameters show that the best sen-
sitivity occurs when Z=Z,,. This is reasonable because it cor-
responds to the best power transfer. All the following results
are for critical coupling. Later, we examine the effects of
detuning from the optimum. Initially, we also suppose the
oscillator is classical, i.e., its energy E> hwp.

The optimal value of the coupling capacitor is calculated
using Q;=1/2Q;, and we get C,=+/C/(w,0,Z).

Since it was assumed Z=Z;,, it holds that Zp=Z,
+i/(w,C,). Voltage amplification by the resonator then be-

comes Vg=V\Q;/(w,Z,C), which holds for a reasonably
large Q;. We thus have VO ﬂ'ﬁw3/2 ’ZOC/(4e\'Q)

With 0,=(L,C)"%, we get 1mmed1ately (dew,/ OL;)™!
—2\'CL2w1/L+l/LJ Using the fact'® that the full width at
half maximum (FWHM) of the loaded resonance absorption
dip at critical coupling is ,/(20;). we get dJI'|/dw),

=2QL/a)p=Q,-/wp.

Appl. Phys. Lett. 87, 092502 (2005)

Inserting these results into Eq. (2), we get an expression
for the AM charge sensitivity in the limit the oscillator is
classical

1 1 ——
8eLl [~ + —\2kyT,
AT

Sq= T (3)
! gmhL N pri

in units of [e/VHz]. Clearly, the shunting inductor is best
omitted, i.e., L—oo. The classical result, Eq. (3), improves
without limit at low E;/E.

We will now discuss quantum corrections to Eq. (3).
Although the spectral density of noise in the resonator is
negligible in output, the integrated phase fluctuations even
due to quantum noise can be large. Integrated Phase noise in
a high-Q oscillator is (Ag02>=2772ﬁLmtwp/(D2 * When (Ag)
exceeds the linear regime ~ 7, which happens at high induc-
tance (low E;/E.), plasma resonance “switches” into the
nonlinear regime, and the gain due to the frequency modu-
lation vanishes. If L>L,, and f,~1 GHz, we have ultimate
limits of roughly E;/E-~0.06, or ~0.02, for a SCPT made
out of Al or Nb, respectively.

Even before this switching happens, the quantum noise
in the oscillator E,= %ﬁwp has an adverse effect because less
energy can be supplied in the form of drive; that is, Vj is
smaller. This can be calculated in a semiclassical way as
follows. Energy of the oscillator is due to drive (Ej) and
noise (we stay in the linear regime): E=(®y¢)?/(87°L,,)
=ED+EQ=((I>0(,DD)2/(8712Lt0l)+%ﬁw , where the phases
are in RMS, ¢ is the total phase swing, and ¢p is that due
to drive. Solving for the latter, we get ¢p
:\/<p2—4172ﬁpr}m/ ®;. The optimal drive strength Vz=V,
corresponds to V2¢@=m/2, and hence the maximum probing
voltage V, is reduced by a factor S=V1-32hw,L,/ CD(Z) due
to quantum noise in the oscillator.

The optimal sensitivity is finally

or_ 640\2eL2\20,T),
- — >
T gmADLNQ;

which depends only weakly on operation frequency. We op-
timized Eq. (2) (replacing V,, by BV,,), assuming similar tun-
nel junction properties as in the experiment, E,E-=1.8 K?
(Al) and E;E-=10 K* (Nb). The results are plotted in Fig. 2
together with corresponding power dissipation (V/ \2)2/R
= thzw[,/ (32¢%Q.L)).

The optimal sensitivity is reached around
E;/E-=0.1,..., 0.3, where the curves in Fig. 2 almost coin-
cide with Eq. (4). C, should be chosen so that critical cou-
pling results. Typically it should also hold L>L; (see the
analytical curve in Fig. 2). However, sensitivity decreases
only weakly if these values are detuned from their optimum
(Fig. 3).

By numerical investigation we found that readout of
arg(I'), with mixer detection, offers within accuracy of
numerics the same numbers than the discussed AM (readout
of |T)).

In experiment, we measured the charge sensitivity for
the following sample and resonator: =11kQ, E;
=0.7K, Ec=26K, E;/E-=0.3, Q;=16, L=28 nH, C
=1.2 pF, C.=0.5 pF. In all samples so far, Q;=<20, which
is currently not understood. The measurements were done as
described in Ref. 5, with Ty~5 K. We measured 5q=1

(4)

N
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FIG. 2. Charge sensitivity of the L-SET optimized from Eq. (2) (black
lines). The analytical result [Eq. (3) multiplied by 8~'], with L=c0, is shown
with dashed lines. The gray lines are the corresponding power dissipation.
All the graphs have the same scales, which are indicated for s, (left) and
dissipation (right). The curves are for different Q; as marked. All graphs
have Z=Z2,.

X107 e/ \r’E by AM at 1 MHz, while a prediction with the
present parameters is 5,=3 X 107 e/\Hz (see also Fig. 3).

Theory and experiment thus agree reasonably. The
somewhat lower sensitivity in experiment is likely to be due
to external noise, which forces a lower V|, and also smoothes
out the steepest modulation. Its origin is not clear. Also the
25% higher values of L; than expected agree qualitatively
with noise.

In the “anharmonic” mode, we measured sq=3
X 1075 e/ \/E, with a usable bandwidth of about 100 MHz
(sq~10-4 e/\r’E at 100 MHz). Considering both s, and
band, a performance comparable to the best rf-SETs (Refs. 6
and 16) has been reached with the L-SET, though here at
more than two orders of magnitude lower power dissipation
(~10 fW).

In the linear regime, the power lost Py from drive fre-
quency m=1 to higher harmonics is determined by the sum,
for m=2, of Josephson junction admittance components
|Y,|=2J,(2¢e/(hw)V,). At the critical voltage V=V, this

o7
10-‘5"10 LH)

FIG. 3. Measured charge sensitivity (box) compared to calculations. In ex-
periment, C.~ 0.5 fF, and L~ 28 nH. The graph shows also how the sensi-
tivity would change as a function C,. and L according to the model.
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amounts to Yy/Y;=Ps/P;~30%. Since charge sensitivity is
proportional to square root of power, it thus decreases only
~15% due to nonlinearity. Further corrections due to slightly
nonsinusoidal lowest band of the SCPT, as well as asymme-
try due to manufacturing spread in junction resistance, we
estimate as insignificant.

Next we discuss nonadiabaticity. Interband Zener transi-
tions might make the SCPT jump off from the supposed
ground band 0. We make a worst case estimate by assuming
that the drive is 27 p-p (partially due to noise). The prob-
ability to cross the minimum A,, of band gap A=FE,—E|, is:
P,=exp[-mAZ%/(2hD¢)], where we evaluate the depen-
dence of the band gap on phase D=dJdA/de at o=m/2. ¢
=2w, is determined by the drive.

Zener tunneling is significant if it occurs sufficiently of-
ten in comparison to 1 — 0 relaxation. The threshold is when
P,~T/(2fy), where I'|=(1 us)™" is the relaxation rate.
Operation of the L-SET can thus be affected above P,
~ 1074

Numerical calculations for P, show that Zener tunneling
is exponentially suppressed, at the L-SET optimal working
point, in the interesting case of low E,/ EC.12 This is because
A,, becomes large and D small. For instance, if E;=1 K and
f»=1 GHz, we got that Zener tunneling is insignificant be-
low E;/Ec~3. With E;=0.5 K and f,,=5 GHz, the threshold
is E;/Ec=1.

We conclude that with sufficiently high Q; and usinr&a
amplifier close to the quantum limit, even 547 1077 e/\Hz,
order of magnitude better than the shot-noise limit of tf-SET,
is intrinsically possible for the L-SET. So far, the sensitivity
has been limited by Q,=20.
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