1,969 research outputs found

    The Rydberg-Atom-Cavity Axion Search

    Get PDF
    We report on the present progress in development of the dark matter axion search experiment with Rydberg-atom-cavity detectors in Kyoto, CARRACK I and CARRACK II. The axion search has been performed with CARRACK I in the 8 % mass range around 10μeV 10 \mu {\rm eV} , and CARRACK II is now ready for the search in the wide range 2μeV50μeV 2 \mu {\rm eV} - 50 \mu {\rm eV} . We have also developed quantum theoretical calculations on the axion-photon-atom system in the resonant cavity in order to estimate precisely the detection sensitivity for the axion signal. Some essential features on the axion-photon-atom interaction are clarified, which provide the optimum experimental setup for the axion search.Comment: 8 pages, 2 figures, Invited talk presented at the Dark2000, Heidelberg, Germany,10-15 July, 200

    Error and Attack Tolerance of Layered Complex Networks

    Get PDF
    Many complex systems may be described not by one, but by a number of complex networks mapped one on the other in a multilayer structure. The interactions and dependencies between these layers cause that what is true for a distinct single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of three real-life examples of two-layer complex systems that come from the fields of communication (the Internet), transportation (the European railway system) and biology (the human brain). In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multilayer systems are much more vulnerable to errors and intentional attacks than they seem to be from a single layer perspective.Comment: 5 pages, 3 figure

    Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification

    Full text link
    There is no consensus on how to construct structural brain networks from diffusion MRI. How variations in pre-processing steps affect network reliability and its ability to distinguish subjects remains opaque. In this work, we address this issue by comparing 35 structural connectome-building pipelines. We vary diffusion reconstruction models, tractography algorithms and parcellations. Next, we classify structural connectome pairs as either belonging to the same individual or not. Connectome weights and eight topological derivative measures form our feature set. For experiments, we use three test-retest datasets from the Consortium for Reliability and Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare pairwise classification results to a commonly used parametric test-retest measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure

    An Algorithm for the Electromagnetic Scattering Due to an Axially Symmetric Body with an Impedance Boundary Condition

    Get PDF
    Let B be a body in R3, and let S denote the boundary of B. The surface S is described by S = {(x, y, z): (x2 + Y2)½= ƒ(z), -1≤ z ≤ I}, where ƒ analytic function that is real and positive on (-1, 1) and ƒ(±1) = 0. An algorithm is described for computing the scattered field due to a plane wave incident field, under Leontovich boundary conditions. The Galerkin method of solution used here leads to a block diagonal matrix involving 2M + 1 blocks, each block being of order 2(2N + 1). If, e.g., N = O(M2), the computed scattered field is accurate to within an error bounded by Ce-cN1 2 depending only on ƒ

    Operation of a 1-Liter-Volume Gaseous Argon Scintillation Counter

    Full text link
    We have built a gas-phase argon ionization detector to measure small nuclear recoil energies (< 10 keVee). In this paper, we describe the detector response to X-ray and gamma calibration sources, including analysis of pulse shapes, software triggers, optimization of gas content, and energy- and position-dependence of the signal. We compare our experimental results against simulation using a 5.9-keV X-ray source, as well as higher-energy gamma sources up to 1332 keV. We conclude with a description of the detector, DAQ, and software settings optimized for a measurement of the low-energy nuclear quenching factor in gaseous argon. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. Funded by Lab-wide LDRD. LLNL-JRNL-415990-DRAFT.Comment: 29 pages, single-column, double-spaced, 21 figure

    An Algorithm for the Electromagnetic Scattering Due to an Axially Symmetric Body with an Impedance Boundary Condition

    Get PDF
    Let B be a body in R3, and let S denote the boundary of B. The surface S is described by S = {(x, y, z): (x2 + Y2)½= ƒ(z), -1≤ z ≤ I}, where ƒ analytic function that is real and positive on (-1, 1) and ƒ(±1) = 0. An algorithm is described for computing the scattered field due to a plane wave incident field, under Leontovich boundary conditions. The Galerkin method of solution used here leads to a block diagonal matrix involving 2M + 1 blocks, each block being of order 2(2N + 1). If, e.g., N = O(M2), the computed scattered field is accurate to within an error bounded by Ce-cN1 2 depending only on ƒ

    Relativistic calculations of the x-ray emission following the Xe-Bi83+^{83+} collision

    Get PDF
    We study the x-ray emission following the collision of a Bi83+^{83+} ion with a neutral Xe atom at the projectile energy 70 MeV/u. The collisional and post-collisional processes are treated separately. The probabilities of various many-electron processes at the collision are calculated within a relativistic independent electron model using the coupled-channel approach with atomic-like Dirac-Fock-Sturm orbitals. The analysis of the post-collisional processes resulting in the x-ray emission is based on the fluorescence yields, the radiation and Auger decay rates, and allows to derive intensities of the x-ray emission and compare them with experimental data. A reasonable agreement between the theoretical results and the recent experimental data is observed. The role of the relativistic effects is investigated.Comment: 11 figures, 2 table

    Relativistic calculations of the charge-transfer probabilities and cross sections for low-energy collisions of H-like ions with bare nuclei

    Full text link
    A new method for solving the time-dependent two-center Dirac equation is developed. The time-dependent Dirac wave function is represented as a sum of atomic-like Dirac-Sturm orbitals, localized at the ions. The atomic orbitals are obtained by solving numerically the finite-difference one-center Dirac and Dirac-Sturm equations with the potential which is the sum of the exact reference-nucleus potential and a monopole-approximation potential from the other nucleus. An original procedure to calculate the two-center integrals with these orbitals is proposed. The approach is tested by calculations of the charge transfer and ionization cross sections for the H(1s)--proton collisions at proton energies from 1 keV to 100 keV. The obtained results are compared with related experimental and other theoretical data. To investigate the role of the relativistic effects, the charge transfer cross sections for the Ne^{9+}(1s)--Ne^{10+} (at energies from 0.1 to 10 MeV/u) and U^{91+}(1s)--U^{92+} (at energies from 6 to 10 MeV/u) collisions are calculated in both relativistic and nonrelativistic cases.Comment: 39 pages, 6 tables, 7 figure

    Axion Radiation from Strings

    Get PDF
    This paper revisits the problem of the string decay contribution to the axion cosmological energy density. We show that this contribution is proportional to the average relative increase when axion strings decay of a certain quantity NaxN_{\rm ax} which we define. We carry out numerical simulations of the evolution and decay of circular and non-circular string loops, of bent strings with ends held fixed, and of vortex-antivortex pairs in two dimensions. In the case of string loops and of vortex-antivortex pairs, NaxN_{\rm ax} decreases by approximately 20%. In the case of bent strings, NaxN_{\rm ax} remains constant or increases slightly. Our results imply that the string decay contribution to the axion energy density is of the same order of magnitude as the well-understood contribution from vacuum realignment.Comment: 29 pages, 10 figure
    corecore