17 research outputs found

    Dimethyl ether in its ground state, v=0, and lowest two torsionally excited states, v11=1 and v15=1, in the high-mass star-forming region G327.3-0.6

    Full text link
    The goal of this paper is to determine the respective importance of solid state vs. gas phase reactions for the formation of dimethyl ether. This is done by a detailed analysis of the excitation properties of the ground state and the torsionally excited states, v11=1 and v15=1, toward the high-mass star-forming region G327.3-0.6. With the Atacama Pathfinder EXperiment 12 m submillimeter telescope, we performed a spectral line survey. The observed spectrum is modeled assuming local thermal equilibrium. CH3OCH3 has been detected in the ground state, and in the torsionally excited states v11=1 and v15=1, for which lines have been detected here for the first time. The emission is modeled with an isothermal source structure as well as with a non-uniform spherical structure. For non-uniform source models one abundance jump for dimethyl ether is sufficient to fit the emission, but two components are needed for the isothermal models. This suggests that dimethyl ether is present in an extended region of the envelope and traces a non-uniform density and temperature structure. Both types of models furthermore suggest that most dimethyl ether is present in gas that is warmer than 100 K, but a smaller fraction of 5%-28% is present at temperatures between 70 and 100 K. The dimethyl ether present in this cooler gas is likely formed in the solid state, while gas phase formation probably is dominant above 100 K. Finally, the v11=1 and v15=1 torsionally excited states are easily excited under the density and temperature conditions in G327.3-0.6 and will thus very likely be detectable in other hot cores as well.Comment: 12 pages (excluding appendices), 8 figures, A&A in pres

    High-resolution mapping of the physical conditions in two nearby active galaxies based on 12CO(1-0), (2-1) and (3-2) lines

    Full text link
    We present a detailed analysis of high resolution observations of the three lowest CO transitions in two nearby active galaxies, NGC4569 and NGC4826. The CO(1-0) and (2-1) lines were observed with the Plateau de Bure Interferometer and the CO(3-2) line with the Submillimeter Array. Combining these data allows us to compare the emission in the three lines and to map the line ratios, R21=I_{CO(2-1)}/I_{CO(1-0)} and R32=I_{CO(3-2)}/I_{CO(1-0)} at a resolution of ~2", i.e., a linear resolution of 160 pc for NGC4569 and 40 pc for NGC4826. In both galaxies the emission in the three lines is similarly distributed spatially and in velocity, and CO is less excited (R32<0.6) than in the Galactic Center or the centers of other active galaxies studied so far. According to a pseudo-LTE model the molecular gas in NGC4569 is cold and mainly optically thick in the CO(1-0) and (2-1) lines; less than 50% of the gas is optically thin in the CO(3-2) line. LVG modeling suggests the presence of an elongated ring of cold and dense gas coinciding with the ILR of the stellar bar. More excited gas is resolved in the circumnuclear disk of NGC4826. According to our pseudo-LTE model this corresponds to warmer gas with a ~50% of the CO(3-2) emission being optically thin. LVG modeling indicates the presence of a semicircular arc of dense and cold gas centered on the dynamical center and ~70 pc in radius. The gas temperature increases and its density decreases toward the center. A near side/far side asymmetry noticeable in the CO, R32 and Pa-alpha maps suggests that opacity effects play a role. Examining published CO maps of nearby active galaxies we find similar asymmetries suggesting that this could be a common phenomenon in active galaxies. These mainly qualitative results open new perspectives for the study of active galaxies with the future Atacama Large Millimeter/submillimeter Array.Comment: accepted for publication in A&

    Molecular Gas in Spiral Galaxies

    Full text link
    In this review, I highlight a number of recent surveys of molecular gas in nearby spiral galaxies. Through such surveys, more complete observations of the distribution and kinematics of molecular gas have become available for galaxies with a wider range of properties (e.g., brightness, Hubble type, strength of spiral or bar structure). These studies show the promise of both interferometers and single-dish telescopes in advancing our general understanding of molecular gas in spiral galaxies. In particular, I highlight the contributions of the recent BIMA Survey of Nearby Galaxies (SONG).Comment: 8 pages, 1 figure. To appear in the proceedings of the 4th Cologne-Bonn-Zermatt-Symposium, "The Dense Interstellar Medium in Galaxies", which was held in Zermatt, Switzerland in September 200

    Advancing analytical electron microscopy methodologies to characterise microstructural features in superalloys

    No full text
    Electron backscatter diffraction (EBSD) generally links crystallographic orientation to the microstructure of crystalline materials. EBSD datasets are now commonly used to identify phases, grains, and their orientations using off-the-shelf software, although substantial additional information may be extracted. Due to the lack of commercially available software, advanced analyses are often done manually and provide only localised information, lacking statistical significance. Here we introduce novel automated methodologies for advanced analyses of microstructural features in Ni-based superalloys. Our methodologies provide additional insights into the characteristics of these features and their underlying physical phenomena. We showcase how to correct wrongly indexed γ/γ’ interface artefacts in combined EBSD and energy-dispersive X-ray spectroscopy (EDS) measurements, how to classify recrystallised grains based on their location, how to assess and visualise grain boundary planes, and how to study the evolution of Σ3 twins during hot deformation. We further demonstrate how phase fractions and grain sizes are more accurately determined in combined EBSD-EDS measurements. The classification of recrystallised grains into different groups enables individual analyses, facilitating the straightforward identification of the underlying recrystallisation mechanism. Our grain boundary plane analysis provides insights into the coherence of Σ3 twins and the potential boundary planes of incoherent Σ3 boundaries. The current paper is a tutorial-style guide for these methodologies. The algorithms are made freely available and, although demonstrated here on Ni-based superalloys, can also be applied to other systems

    Advancements in processing of Ni-based superalloys by microstructure engineering via discontinuous γ′ break-down

    No full text
    Wrought γ′-strengthened Ni-based superalloys are critical materials for gas turbine disks in aircraft and power-generation applications. However, their high inherent strength makes their hot formability challenging, and this is often related to intergranular cracking. We propose that this type of crack formation may be mitigated by grain boundary serrations which has not yet been demonstrated in superalloys. Here, we introduce engineered grain boundary serrations in a Ni-based superalloy via discontinuous γ′ precipitation during slow cooling after super-solvus solutionising. We compare the formability of this microstructure to a counterpart with globular γ′ and straight grain boundaries, during sub-solvus compression at 950–1130 °C. We demonstrate that the microstructure with discontinuous γ′ shows excellent cracking resistance, while the one with globular γ′ develops severe intergranular cracks during compression ≤1100 °C. The discontinuous γ′ microstructure exhibits up to 26% lower peak flow stresses and recrystallises at temperatures ≤1100 °C, compared to the globular γ′ microstructure where recrystallisation does not start until 1130 °C. Compression of the discontinuous γ′ microstructure at 1000–1050 °C yields recrystallised fractions of >75 vol.% and results in a duplex γ-γ′ microstructure with grain diameters <4 μm. We argue that its significantly improved formability results from these engineered serrated grain boundaries, the coarsened γ′ morphology, energy absorption by the break-down of discontinuous γ′, and the resulting development of a fine-grained duplex γ-γ′ microstructure. Integrating such discontinuous γ′ precipitation into advanced manufacturing routes will facilitate or, in some cases, even enable manufacturing of parts for aircraft turbines and gas engines at lower temperatures and forces
    corecore