1,497 research outputs found
Multi-Satellite Attitude Prediction program/Orbiting Solar Observatory-8 (MSAP/OSO-8) operating guide
The sun's lower corona and chromosphere and their interaction in the X-ray and ultraviolet (UV) spectral regions were investigated to better understand the transport of energy from the photosphere to the corona. The interaction between the solar electromagnetic and particle radiation and the earth's environment was studied and the background component of cosmic X-rays was discussed
Spectroscopy and 3D imaging of the Crab nebula
Spectroscopy of the Crab nebula along different slit directions reveals the 3
dimensional structure of the optical nebula. On the basis of the linear radial
expansion result first discovered by Trimble (1968), we make a 3D model of the
optical emission. Results from a limited number of slit directions suggest that
optical lines originate from a complicated array of wisps that are located in a
rather thin shell, pierced by a jet. The jet is certainly not prominent in
optical emission lines, but the direction of the piercing is consistent with
the direction of the X-ray and radio jet. The shell's effective radius is ~ 79
seconds of arc, its thickness about a third of the radius and it is moving out
with an average velocity 1160 km/s.Comment: 21 pages, 14 figures, submitted to ApJ, 3D movie of the Crab nebula
available at http://www.fiz.uni-lj.si/~vidrih
Transferable Pair Potentials for CdS and ZnS Crystals
A set of interatomic pair potentials is developed for CdS and ZnS crystals.
We show that a simple energy function, which has been used to describe the
properties of CdSe [J. Chem. Phys. 116, 258 (2002)], can be parametrized to
accurately describe the lattice and elastic constants, and phonon dispersion
relations of bulk CdS and ZnS in the wurtzite and rocksalt crystal structures.
The predicted coexistence pressure of the wurtzite and rocksalt structures, as
well as the equation of state are in good agreement with experimental
observations. These new pair potentials enable the study of a wide range of
processes in bulk and nanocrystalline II-VI semiconductor materials
2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group
The International Liaison Committee on Resuscitation initiated a continuous review of new, peer-reviewed published cardiopulmonary resuscitation science. This is the fifth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations; a more comprehensive review was done in 2020. This latest summary addresses the most recently published resuscitation evidence reviewed by International Liaison Committee on Resuscitation task force science experts. Topics covered by systematic reviews in this summary include resuscitation topics of video-based dispatch systems; head-up cardiopulmonary resuscitation; early coronary angiography after return of spontaneous circulation; cardiopulmonary resuscitation in the prone patient; cord management at birth for preterm and term infants; devices for administering positive-pressure ventilation at birth; family presence during neonatal resuscitation; self-directed, digitally based basic life support education and training in adults and children; coronavirus disease 2019 infection risk to rescuers from patients in cardiac arrest; and first aid topics, including cooling with water for thermal burns, oral rehydration for exertional dehydration, pediatric tourniquet use, and methods of tick removal. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence, according to the Grading of Recommendations Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations or good practice statements. Insights into the deliberations of the task forces are provided in Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces listed priority knowledge gaps for further research
Path integral Monte Carlo simulations of silicates
We investigate the thermal expansion of crystalline SiO in the --
cristobalite and the -quartz structure with path integral Monte Carlo
(PIMC) techniques. This simulation method allows to treat low-temperature
quantum effects properly. At temperatures below the Debye temperature, thermal
properties obtained with PIMC agree better with experimental results than those
obtained with classical Monte Carlo methods.Comment: 27 pages, 10 figures, Phys. Rev. B (in press
Correlation effects in total energy of transition metals and related properties
We present an accurate implementation of total energy calculations into the
local density approximation plus dynamical mean-field theory (LDA+DMFT) method.
The electronic structure problem is solved through the full potential linear
Muffin-Tin Orbital (FP-LMTO) and Korringa-Kohn-Rostoker (FP-KKR) methods with a
perturbative solver for the effective impurity suitable for moderately
correlated systems. We have tested the method in detail for the case of Ni and
investigated the sensitivity of the results to the computational scheme and to
the complete self-consistency. It is demonstrated that the LDA+DMFT method can
resolve a long-standing controversy between the LDA/GGA density functional
approach and experiment for equilibrium lattice constant and bulk modulus of
Mn.Comment: 14 pages, 5 figure
Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins
We study implications for the apparent alignment of the spin axes,
proper-motions, and polarization vectors of the Crab and Vela pulsars. The spin
axes are deduced from recent Chandra X-ray Observatory images that reveal jets
and nebular structure having definite symmetry axes. The alignments indicate
these pulsars were born either in isolation or with negligible velocity
contributions from binary motions. We examine the effects of rotation and the
conditions under which spin-kick alignment is produced for various models of
neutron star kicks. If the kick is generated when the neutron star first forms
by asymmetric mass ejection or/and neutrino emission, then the alignment
requires that the protoneutron star possesses an original spin with period
much less than the kick timescale, thus spin-averaging the kick forces.
The kick timescale ranges from 100 ms to 10 s depending on whether the kick is
hydrodynamically driven or neutrino-magnetic field driven. For hydrodynamical
models, spin-kick alignment further requires the rotation period of an
asymmetry pattern at the radius near shock breakout (>100 km) to be much less
than ~100 ms; this is difficult to satisfy unless rotation plays a dynamically
important role in the core collapse and explosion (P_s\lo 1 ms). Aligned kick
and spin vectors are inherent to the slow process of asymmetric electromagnetic
radiation from an off-centered magnetic dipole. We reassess the viability of
this effect, correcting a factor of 4 error in Harrison and Tademaru's
calculation that increases the size of the effect. To produce a kick velocity
of order a few hundred km/s requires that the neutron star be born with an
initial spin close to 1 ms and that spindown due to r-mode driven gravitational
radiation be inefficient compared to standard magnetic braking.Comment: Small changes/additions; final version to be published in ApJ,
Vol.549 (March 10, 2001
Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations
We performed high-pressure angle dispersive x-ray diffraction measurements on
Fe5Si3 and Ni2Si up to 75 GPa. Both materials were synthesized in bulk
quantities via a solid-state reaction. In the pressure range covered by the
experiments, no evidence of the occurrence of phase transitions was observed.
On top of that, Fe5Si3 was found to compress isotropically, whereas an
anisotropic compression was observed in Ni2Si. The linear incompressibility of
Ni2Si along the c-axis is similar in magnitude to the linear incompressibility
of diamond. This fact is related to the higher valence-electron charge density
of Ni2Si along the c-axis. The observed anisotropic compression of Ni2Si is
also related to the layered structure of Ni2Si where hexagonal layers of Ni2+
cations alternate with graphite-like layers formed by (NiSi)2- entities. The
experimental results are supported by ab initio total-energy calculations
carried out using density functional theory and the pseudopotential method. For
Fe5Si3, the calculations also predicted a phase transition at 283 GPa from the
hexagonal P63/mcm phase to the cubic structure adopted by Fe and Si in the
garnet Fe5Si3O12. The room-temperature equations of state for Fe5Si3 and Ni2Si
are also reported and a possible correlation between the bulk modulus of iron
silicides and the coordination number of their minority element is discussed.
Finally, we report novel descriptions of these structures, in particular of the
predicted high-pressure phase of Fe5Si3 (the cation subarray in the garnet
Fe5Si3O12), which can be derived from spinel Fe2SiO4 (Fe6Si3O12).Comment: 44 pages, 13 figures, 3 Table
The Distribution, Excitation and Formation of Cometary Molecules: Methanol, Methyl Cyanide and Ethylene Glycol
We present an interferometric and single dish study of small organic species
toward Comets C/1995 O1 (Hale-Bopp) and C/2002 T7 (LINEAR) using the BIMA
interferometer at 3 mm and the ARO 12m telescope at 2 mm. For Comet Hale-Bopp,
both the single-dish and interferometer observations of CH3OH indicate an
excitation temperature of 105+/-5 K and an average production rate ratio
Q(CH3OH)/Q(H2O)~1.3% at ~1 AU. Additionally, the aperture synthesis
observations of CH3OH suggest a distribution well described by a spherical
outflow and no evidence of significant extended emission. Single-dish
observations of CH3CN in Comet Hale-Bopp indicate an excitation temperature of
200+/-10 K and a production rate ratio of Q(CH3CN)/Q(H2O)~0.017% at ~1 AU. The
non-detection of a previously claimed transition of cometary (CH2OH)2 toward
Comet Hale-Bopp with the 12m telescope indicates a compact distribution of
emission, D<9'' (<8500 km). For the single-dish observations of Comet T7
LINEAR, we find an excitation temperature of CH3OH of 35+/-5 K and a CH3OH
production rate ratio of Q(CH3OH)/Q(H2O)~1.5% at ~0.3 AU. Our data support
current chemical models that CH3OH, CH3CN and (CH2OH)2 are parent nuclear
species distributed into the coma via direct sublimation off cometary ices from
the nucleus with no evidence of significant production in the outer coma.Comment: accepted for publication in Ap
Electronic Structure of Transition Metals Fe, Ni and Cu in the GW Approximation
The quasiparticle band structures of 3d transition metals, ferromagnetic Fe,
Ni and paramagnetic Cu, are calculated by the GW approximation. The width of
occupied 3d valence band, which is overestimated in the LSDA, is in good
agreement with experimental observation. However the exchange splitting and
satellite in spectra are not reproduced and it is required to go beyond the GW
approximation. The effects of static screening and dynamical correlation are
discussed in detail in comparison with the results of the static COHSEX
approximation. The dynamical screening effects are important for band width
narrowing.Comment: 4 pages, 3 figure
- …