994 research outputs found

    Survival of the Fattest

    Get PDF

    Evolution of the Oligopeptide Transporter Family

    Get PDF
    The oligopeptide transporter (OPT) family of peptide and iron-siderophore transporters includes members from both prokaryotes and eukaryotes but with restricted distribution in the latter domain. Eukaryotic members were found only in fungi and plants with a single slime mold homologue clustering with the fungal proteins. All functionally characterized eukaryotic peptide transporters segregate from the known iron-siderophore transporters on a phylogenetic tree. Prokaryotic members are widespread, deriving from many different phyla. Although they belong only to the iron-siderophore subdivision, genome context analyses suggest that many of them are peptide transporters. OPT family proteins have 16 or occasionally 17 transmembrane-spanning Ī±-helical segments (TMSs). We provide statistical evidence that the 16-TMS topology arose via three sequential duplication events followed by a gene-fusion event for proteins with a seventeenth TMS. The proposed pathway is as follows: 2 TMSsĀ ā†’Ā 4 TMSsĀ ā†’Ā 8 TMSsĀ ā†’Ā 16 TMSsĀ ā†’Ā 17 TMSs. The seventeenth C-terminal TMS, which probably arose just once, is found in just one phylogenetic group of these homologues. Analyses for orthology revealed that a few phylogenetic clusters consist exclusively of orthologues but most have undergone intermixing, suggestive of horizontal transfer. It appears that in this family horizontal gene transfer was frequent among prokaryotes, rare among eukaryotes and largely absent between prokaryotes and eukaryotes as well as between plants and fungi. These observations provide guides for future structural and functional analyses of OPT family members

    A Vaccine Against Ignorance?

    Get PDF

    Instability and topological robustness of Weyl semimetals against Coulomb interaction

    Full text link
    There is a close connection between various new phenomena in Weyl semimetals and the existence of linear band crossings in the single particle description. We show, by a full self-consistent mean-field calculation, how this picture is modified in the presence of long-range Coulomb interactions. The chiral symmetry breaking occurs at strong enough interactions and the internode interband excitonic pairing channel is found to be significant, which determines the gap-opened band profile varying with interaction strength. Remarkably, in the resultant interacting phase, finite band Chern number jumps in the three-dimensional momentum space are retained, indicating the robustness of the topologically nontrivial features.Comment: 8 pages, 4 figures, accepted by Phys. Rev.

    The Transporter Classification Database: recent advances

    Get PDF
    The Transporter Classification Database (TCDB), freely accessible at http://www.tcdb.org, is a relational database containing sequence, structural, functional and evolutionary information about transport systems from a variety of living organisms, based on the International Union of Biochemistry and Molecular Biology-approved transporter classification (TC) system. It is a curated repository for factual information compiled largely from published references. It uses a functional/phylogenetic system of classification, and currently encompasses about 5000 representative transporters and putative transporters in more than 500 families. We here describe novel software designed to support and extend the usefulness of TCDB. Our recent efforts render it more user friendly, incorporate machine learning to input novel data in a semiautomatic fashion, and allow analyses that are more accurate and less time consuming. The availability of these tools has resulted in recognition of distant phylogenetic relationships and tremendous expansion of the information available to TCDB users

    The NMR side-chain assignments and solution structure of enzyme IIBcellobiose of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli

    Get PDF
    The assignment of the side-chain Nh IR resonances and the determination of the three-dimensional solution structure of the C10S mutant of enzyme IIBcellobiose (IIBcel) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli are presented. The side-chain resonances were assigned nearly completely using a variety of mostly heteronuclear NMR experiments, including HCCH-TOCSY, HCCH-COSY, and COCCH-TOCSY experiments as well as CBCACOHA, CBCA(CO)NH, and HBHA(CBCA)(CO)NH experiments.In order to obtain the three-dimensional structure, NOE data were collected from N-15-NOESY-HSQC, C-13-HSQC-NOESY, and 2D NOE experiments. The distance restraints derived from these NOE data were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In an iterative procedure, additional NOE assignments were derived from the calculated structures and new structures were calculated. The final set of structures, calculated with approximately 2000 unambiguous and ambiguous distance restraints, has an rms deviation of 1.1 Angstrom, on C alpha atoms. IIBcel consists of a four stranded parallel beta-sheet, in the order 2134. The sheet is flanked with two and three alpha-helices on either side. Residue 10, a cysteine in the wild-type enzyme, which is phosphorylated during the catalytic cycle, is located at the end of the first beta-strand. A loop that is proposed to be involved in the binding of the phosphoryl-group follows the cysteine. The loop appears to be disordered in the unphosphorylated state.</p
    • ā€¦
    corecore