17 research outputs found

    Evaluation of an online fermentation monitoring system

    Get PDF
    The need to introduce promising bioethanol production technologies calls for advanced laboratory techniques to study experiment designs and to obtain their results in a quick and reliable way. Real time monitoring based on general principles of ethanol fermentation, such as effluent CO2 volume, avoids time consuming steps, long lasting analyses and delivers information about the process directly. A device based on the above features and capable for real time monitoring on parallel channels was developed by the authors and is described in this paper. Both for calibration and for fermentation, test runs were carried out on different days and channels. Statistical evaluation was based on the obtained data. According to the t-test (P=0.05) and Grubbs analysis, the calibration method is reliable regardless of the date of calibration. When evaluating the fermentation results by ANCOVA acceptable standard derivations were obtained as impact of channel (58.8 ml), date (82.1 ml) and incorporating all impacts (116.2 ml). The final ethanol concentrations calculated based on the gas volume were compared to ones determined by HPLC and an average difference of 10% was found. Thus, the device proved to be advantageous in monitoring fermentation

    Relevance of the light signaling machinery for cellulase expression in trichoderma reesei (hypocrea jecorina)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In nature, light is one of the most important environmental cues that fungi perceive and interpret. It is known not only to influence growth and conidiation, but also cellulase gene expression. We therefore studied the relevance of the main components of the light perception machinery of <it>Trichoderma reesei </it>(<it>Hypocrea jecorina</it>), ENV1, BLR1 and BLR2, for production of plant cell wall degrading enzymes in fermentations aimed at efficient biosynthesis of enzyme mixtures for biofuel production.</p> <p>Findings</p> <p>Our results indicate that despite cultivation in mostly dark conditions, all three components show an influence on cellulase expression. While we found the performance of the enzyme mixture secreted by a deletion mutant in <it>env1 </it>to be enhanced, the higher cellulolytic activity observed for <it>Δblr2 </it>is mainly due to an increased secretion capacity of this strain. <it>Δblr1 </it>showed enhanced biomass accumulation, but due to its obviously lower secretion capacity still was the least efficient strain in this study.</p> <p>Conclusions</p> <p>We conclude that with respect to regulation of plant cell wall degrading enzymes, the blue light regulator proteins are unlikely to act as a complex. Their regulatory influence on cellulase biosynthesis involves an alteration of protein secretion, which may be due to adjustment of transcription or posttranscriptional regulation of upstream factors. In contrast, the regulatory function of ENV1 seems to involve adjustment of enzyme proportions to environmental conditions.</p

    Sweet sorghum juice and bagasse as a possible feedstock for bioethanol production

    No full text
    The aim of our study was to estimate the overall ethanol potential of a promising Hungarian sweet sorghum variety called ‘Monori Édes’ developed by Agroszemek Ltd. For ethanol production following parts of the plant can be utilized: the stem juice containing sucrose and the bagasse built up mainly from lignocellulose. As lignocellulosics have to be pretreated and hydrolyzed prior to fermentation, another purpose of our research was to apply weak alkaline pretreatment methods to enhance enzymatic digestibility of bagasse thus, to improve the ethanol yield. In our study the effect of two bases (NaOH and KOH) in two concentrations (1% and 2%) and at two temperatures (room temperature and 121 °C) was investigated on the efficiency of enzymatic hydrolysis. Every pretreatment type affected positively the hydrolysis efficiency but in different degrees. Best results were achieved with 2% NaOH at 121 °C. However highest ethanol conversion based on the glucan content of pretreated material was reached using 2% NaOH at room temperature. Summarizing the ethanol potentials of juice and bagasse an overall potential of about 8 300 L/ha was estimated

    Simulation of flood hazard and risk in the Danube basin with the Future Danube Model

    Get PDF
    Major river and flash flood events have accumulated in Central and Eastern Europe over the last decade reminding the public as well as the insurance sector that climate related risks are likely to become even more damaging and prevalent as climate patterns change. However, information about current and future hydro-climatic extremes is often not available. The Future Danube Model (FDM) is an end-user driven multi-hazard and risk model suite for the Danube region that has been developed to provide climate services related to perils such as heavy precipitation, heat waves, floods, and droughts under recent and scenario conditions. As a result, it provides spatially consistent information on extreme events and natural resources throughout the entire Danube catchment. It can be used to quantify climate risks, to support the implementation of the EU framework directives, for climate informed urban and land use planning, water resources management, and for climate proofing of large scale infrastructural planning including cost benefit analysis. The model suite consists of five individual and exchangeable modules: a weather and climate module, a hydrological module, a risk module, an adaptation module, and a web-based visualization module. They are linked in such a way that output from one module can either be used standalone or fed into subsequent modules. The utility of the tool has been tested by experts and stakeholders. The results show that more and more intense hydrological extremes are likely to occur under climate scenario conditions, e.g. higher order floods may occur more frequently
    corecore