28 research outputs found

    Adsorción-desorción del metal PB (II) a modelos de partículas coloidales del suelo

    Get PDF
    84 páginas.-- 17 figuras.-- 6 tablas.-- 93 referencias.-- Memoria del XXXVIII Curso Internacional de Edafología y Biología VegetalDirector: Celis, R.Dos grupos de materiales, minerales y orgánicos, constituyen la fase sólida del suelo. Aunque ambos son importantes, desde el punto de vista cuantitativo y por regla general, la materia mineral es mucho más abundante que la orgánica. Así, podemos establecer un valor medio del 95% para la fase mineral y un 5% para la orgánica. No obstante, los suelos de Andalucía Occidental, por ejemplo, tienen un contenido medio en materia orgánica del 1-2% , pudiendo llegar el %M.O. hasta el 50% en suelos orgánicos (si el %M.O. < 1 entonces empieza a haber problemas de deficiencia de materia orgánica desde el punto de vista agrícola).Peer reviewe

    Adsorción-desorción de los metales pesados Pb(II) y Hg(II) por modelos de partículas coloidales del suelo

    Get PDF
    4 páginas, 2 figuras, 1 tabla, 3 referencias.-- Publicado en el Capítulo IV: Contaminación y Medio Ambiente.-- Trabajo presentado a la XVII Reunión Científica de la Sociedad Española de Arcillas, celebrada en Elche (Alicante) y Castellón, del 27-29 de noviembre de 2002.El destino de los metales pesados en el medio ambiente está controlado por las reacciones de adsorción a los coloides del suelo. Por otro lado, las interacciones entre los constituyentes del suelo pueden alterar significativamente la cantidad y naturaleza de la superficie expuesta por los coloides del suelo para la adsorción de contaminantes. Por tanto, las predicciones sobre la extensión de la adsorción basadas en la suma de las capacidades adsorbentes de los constituyentes individuales del suelo pueden desviarse de lo que ocurre en la naturaleza (1). En la bibliografia han sido poco estudiadas las interacciones entre contaminantes y adsorbentes polifásicos, aunque en la última década ha aumentado la atención dada al estudio del comportamiento de modelos de asociaciones coloidales para obtener una interpretación más realista del proceso de adsorción en el suelo (2). En este trabajo se han determinado las capacidades adsorbentes de modelos de partículas coloidales binarias y ternarias que contienen montmorillonita (SW), ferrihidrita (Fh) y ácido húmico (AH) para dos contaminantes inorgánicos, los metales pesados Pb(lI) y Hg(II), Y se compararon con las capacidades de adsorción de los constituyentes individuales. Las partículas modelos se prepararon en el laboratorio y se caracterizaron por análisis elemental, espectroscopía infrarroja, difracción de rayos X y medidas de superficie específica. Se estudió la adsorción-desorción de Pb(lI) y Hg(ll) por parte de los diferentes adsorbentes y se utilizaron las técnicas de espectroscopía infrarroja y difracción de rayos X para analizar los mecanismos de interacción.Este trabajo ha sido financiado por el proyecto del MCYT REN2001-1700-C02- 01/TECNO y por el grupo RNM124 del PAI de la Junta de AndalucíaPeer reviewe

    The potential role of the adipokine HMGB1 in obesity and insulin resistance. Novel effects on adipose tissue biology

    Get PDF
    Discovery of the adipose tissue as a major source of signaling molecules almost three decades ago set a novel physiological paradigm that paved the way for the identification of metabolic organs as endocrine organs. Adipocytes, the main adipose tissue cell type, do not only represent the principal site of energy storage in form of triglycerides, but also produce a variety of molecules for short and long distance intercellular communication, named adipokines, which coordinate systemic responses. Although the best known adipokines identified and characterized hitherto are leptin and adiponectin, novel adipokines are continuously being described, what have significantly helped to elucidate the role of adipocyte biology in obesity and associated comorbidities. One of these novel adipokines is high-mobility group box 1 (HMGB1), a ubiquitous nuclear protein that has been recently reported to be dysregulated in obese dysfunctional adipocytes. Although the classical function of HMGB1 is related to inflammation and immunity, acting as an alarmin, novel advances evidence an active implication of HMGB1 in tissue remodeling and fibrosis. This review summarizes the current evidence on the mechanisms controlling HMGB1 release, as well as its role as a regulator of adipocyte function and extracellular matrix remodeling, with special emphasis on the potential of this novel adipokine as a target in the obesity treatment

    Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome

    Get PDF
    We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood–testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17–2.93), ORaddrs2233678 = 1.62 (1.11–2.36), ORaddrs62105751 = 1.43 (1.06–1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.Plan Andaluz de Investigacion, Desarrollo e Innovacion (PAIDI 2020) PY20_00212 P20_00583Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation SAF2016-78722-R PID2020-120157RB-I00Proyectos I + D + i del Programa Operativo FEDER 2020 B-CTS-584-UGR20 B-CTS-260-UGR20Spanish Government RYC-2014-16458Spanish Ministry of Economy and Competitiveness through the "Juan de la Cierva Incorporacion" program (MCIN/AEI) IJC2018038026-IEuropean CommissionMCIN/AEIFSE "El FSE invierte en tu futuro" FPU20/02926 BES-2017-081222Portuguese Foundation for Science and Technology (FCT) - European Social Funds (COMPETE-FEDER) Portuguese Foundation for Science and Technology IF/01262/2014FCT from the Portuguese State Budget of the Ministry for Science, Technology and High Education SFRH/BPD/120777/2016European Social Fund through the Programa Operacional do Capital HumanoPortuguese Foundation for Science and Technology European Commission UID/BIM/00009/2013 UIDB/UIDP/00009/2020Instituto de Salud Carlos III (FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe) DTS18/00101Generalitat de Catalunya 2017SGR191SNS-Dpt. Salut Generalitat de Catalunya CES09/020 MCIN/AEI BES-2017-081222 PEstC/SAU/LA0003/2013 POCI-01-0145-FEDER-00727

    Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11367-013-0614-0Purpose Blended cements use waste products to replace Portland cement, the main contributor to CO2 emissions in concrete manufacture. Using blended cements reduces the embodied greenhouse gas emissions; however, little attention has been paid to the reduction in CO2 capture (carbonation) and durability. The aim of this study is to determine if the reduction in production emissions of blended cements compensates for the reduced durability and CO2 capture. Methods This study evaluates CO2 emissions and CO2 capture for a reinforced concrete column during its service life and after demolition and reuse as gravel filling material. Concrete depletion, due to carbonation and the unavoidable steel embedded corrosion, is studied, as this process consequently ends the concrete service life. Carbonation deepens progressively during service life and captures CO2 even after demolition due to the greater exposed surface area. In this study, results are presented as a function of cement replaced by fly ash (FA) and blast furnace slag (BFS). Results and discussion Concrete made with Portland cement, FA (35%FA), and BFS blended cements (80%BFS) captures 47, 41, and 20 % of CO2 emissions, respectively. The service life of blended cements with high amounts of cement replacement, like CEM III/A (50 % BFS), CEM III/B (80 % BFS), and CEMII/B-V (35%FA), was about 10%shorter, given the higher carbonation rate coefficient. Compared to Portland cement and despite the reduced CO2 capture and service life, CEM III/B emitted 20 % less CO2 per year. Conclusions To obtain reliable results in a life cycle assessment, it is crucial to consider carbonation during use and after demolition. Replacing Portland cement with FA, instead of BFS, leads to a lower material emission factor, since FA needs less processing after being collected, and transport distances are usually shorter. However, greater reductions were achieved using BFS, since a larger amount of cement can be replaced. Blended cements emit less CO2 per year during the life cycle of a structure, although a high cement replacement reduces the service life notably. If the demolished concrete is crushed and recycled as gravel filling material, carbonation can cut CO2 emissions by half. A case study is presented in this paper demonstrating how the results may be utilized.This research was financially supported by the Spanish Ministry of Science and Innovation (research project BIA2011-23602). The authors thank the anonymous reviewers for their constructive comments and useful suggestions. The authors are also grateful for the thorough revision of the manuscript by Dr. Debra Westall.García Segura, T.; Yepes Piqueras, V.; Alcalá González, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment. 19(1):3-12. https://doi.org/10.1007/s11367-013-0614-0S312191Aïtcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359Angst U, Elsener B, Larsen C (2009) Critical chloride content in reinforced concrete—a review. Cement Concr Res 39(12):1122–1138Berge B (2000) The ecology of building materials. Architectural Press, OxfordBertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of Steel in Concrete—Prevention Diagnosis. Repair, Wiley-VCH, WeinheimBörjesson P, Gustavsson L (2000) Greenhouse gas balances in building construction: wood versus concrete from life cycle and forest land-use perspectives. Energy Policy 28(9):575–588Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-crunch algorithm. Eng Struct 48:363–372CEN (2011) EN 197–1: Cement. Part 1: Composition, specifications and conformity criteria for common cements. European Committee for Standardization, BrusselsCIWMB (2000) Designing with vision: a technical manual for materials choices in sustainable construction. California Integrated Waste Management Board, SacramentoCollins F (2010) Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. Int J Life Cycle Assess 15(6):549–556Database BEDEC (2012) Institute of Construction Technology of Catalonia. Barcelona, SpainDodoo A, Gustavsson L, Sathre R (2009) Carbon implications of end-of-life management of building materials. Resour Conserv Recy 53(5):276–286ECO-SERVE Network Cluster 3 (2004) Baseline Report for the Aggregate and Concrete Industries in Europe. European Commission, Hellerup: http://www.eco-serve.net/uploads/479998_baseline_report_final.pdf , accessed 10 September 2012European Federation of Concrete Admixtures Associations (2006) Environmental Product Declaration (EPD) for Normal Plasticizing admixtures. Environmental Consultant, Sittard: http://www.efca.info/downloads/324%20ETG%20Plasticiser%20EPD.pdf , accessed 13 October 2012Galán I (2011) Carbonatación del hormigón: combinación de CO2. Dissertation, Universidad Complutense de Madrid, SpainGalán I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO2 by concrete carbonation. Environ Sci Technol 44(8):3181–3186Flower DJM, Sanjayan JG (2007) Greenhouse gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288Guzmán S, Gálvez JC, Sancho JM (2011) Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement Concr Res 41(8):893–902Houst YF, Wittmann FH (2002) Depth profiles of carbonates formed during natural carbonation. C Cement Concr Res 32(12):1923–1930Institute for Diversification and Energy Saving (2010) Conversion factors of primary energy and CO2 emissions of 2010. M. Industria, Energía y Turismo, Madrid, Spain: http://www.idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Factores_Conversion_Energia_y_CO2_2010_0a9cb734.pdf , accessed 10 September 2012ISO (2005) ISO/TC 71—Business plan. Concrete, reinforced concrete and prestressed concrete. International Organization for Standardization (ISO), Geneva, SwitzerlandISO (2006) ISO 14040: Environmental management—life-cycle assessment—principles and framework. International Organization for Standardization, Geneva, SwitzerlandJiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high-volume fly ash concrete. Cement Concr Res 30(5):699–702Jönsson A, Björklund T, Tillman AM (1988) LCA of concrete and steel building frames. Int J Life Cycle Assess 3(4):216–224Knoeri C, Sanyé-Mengual E, Althaus HJ (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess 18(5):909–918Lagerblad B (2005) Carbon dioxide uptake during concrete life-cycle: State of the art. Swedish Cement and Concrete Research Institute, StockholmLeber I, Blakey FA (1956) Some effects of carbon dioxide on mortars and concrete. J Am Concr Inst 53:295–308Fomento M (2008) EHE-08; Code of Structural Concrete. M. Fomento, Madrid, SpainMarinkovic S, Radonjanin V, Malešev M, Ignjatovic I (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag 30(11):2255–2264Martinez-Martin FJ, Gonzalez-Vidosa F, Hospitaler A, Yepes V (2012) Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ-SCI A 13(6):420–432O’Brien KR, Ménaché J, O’Moore LM (2009) Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int J Life-cycle Assess 14(7):621–629Pade C, Guimaraes M (2007) The CO2 uptake of concrete in a 100-year perspective. Cem Concr Res 37(9):1384–1356Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 88(4):363–373Payá I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building by simulated annealing. Comput-Aided Civ Inf 23(8):596–610Payá-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-efficient design of reinforced concrete building frames. Eng Struct 31(7):1501–1508Saassouh B, Lounis Z (2012) Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods. Cement Concrete Comp 34(9):1082–1093The Concrete Centre (2009) The Concrete Industry Sustainability Performance Report. The Concrete Center, Camberley: http://www.admixtures.org.uk/downloads/Concrete%20Industry%20Sustainable%20Performance%20Report%202009.pdf , accessed 9 September 2012Tuutti K (1982) Corrosion of steel in Concrete. CBI Forskning Research Report, Swedish Cem Concr Res Inst. Stockholm, SwedenWeil M, Jeske U, Schebek L (2006) Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manage Res 24(3):197–206World Steel Association (2010) Fact sheet: the three Rs of sustainable Steel. World Steel Association, Brussels: http://www.steel.org/Sustainability/~/media/Files/SMDI/Sustainability/3rs.ashx , accessed 15 September 2012Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329Yepes V, González-Vidosa F, Alcalá J, Villalba P (2012) CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386Yiwei T, Qun Z, Jian G (2011) Study on the Life-cycle Carbon Emission and Energy-efficiency Management of the Large-scale Public Buildings in Hangzho. China. International Conference on Computer and Management, Wuhan, pp 546–552Zornoza E, Payá J, Monzó J, Borrachero MV, Garcés P (2009) The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Const Build Mater 23(3):1323–132

    Estudio de coloides naturales y modificados como adsorbentes para la reducción de la contaminación de suelos y aguas

    No full text
    Hasta la fecha, la mayor parte de la investigación en organoarcillas ha estado relacionada con grandes cationes orgánicos, sin grupos funcionales específicos, tales como cationes alquilamonio, prestándose mucha menor atención a las arcillas modificadas con cationes orgánicos con grupos funcionales polares. Los cationes orgánicos con los grupos funcionales seleccionados podrían permitir la modificaciones electiva de la superficie del mineral de la arcilla, según la fórmula estructural del pesticida a absorber, e incluso podrían dar a las organoarcillas un carácter de absorbentes dobles con afinidad tanto por metales pesados (gracias a su grupo funcional polar) como por pesticidas (selectivamente por su funcionalidad o no selectivamente mediante interacciones hidrofóbicas). Muy recientemente, Sheng et al. (1999) describieron un absorbente doble de plomo y clorobenceno intercambiando cationes carboxideciltrietilamonio por los cationes inorgánicos de la montmorillonita, consiguiendo así una retención simultánea de ambos contaminantes. Además, los cationes orgánicos con baja toxicidad u origen natural serían de particular interés. El carácter natural de las técnicas de remediación se ha buscado, en la literatura científica, no sólo por disminuir la toxicidad que puedan agregar al medio el uso de estas técnicas, sino por su bajo coste y ubicuidad, algo muy importante a la hora de optimizar los métodos de descontaminación. Dentro de este contexto, el objetivo general de este trabajo ha sido evaluar la viabilidad de preparar organoarcillas a partir de cationes orgánicos de origen natural con diversos grupos funcionales en sus estructuras y caracterizar las propiedades adsrobentes de las orgnaoarcillas resultantes para diversos plaguicidas y metales pesados.Peer Reviewe

    Interacciones entre componentes activos de la fracción coloidal de los suelos

    Get PDF
    4 páginas, 1 figura, 2 tablas, 6 referencias.-- Publicado en el Capítulo III: Edafología y Química Agrícola.-- Trabajo presentado a la XVII Reunión Científica de la Sociedad Española de Arcillas, celebrada en Elche (Alicante) y Castellón, del 27-29 de noviembre de 2002.Los coloides organominerales naturales son asociaciones íntimas de partículas inorgánicas y materia orgánica entre las que tienen lugar muchos y muy variados tipos de interacciones. El modelo actual de partícula coloidal natural consiste en un núcleo mineral (p.e., filosilicatos) asociado con óxidos, hidróxidos u oxihidróxidos metálicos y todo ello recubierto en mayor o menor grado por materia orgánica (1, 2). Gran parte de la superficie expuesta por el coloide corresponde al recubrimiento de materia orgánica y es por esto por lo que se considera que la materia orgánica es la principal responsable de la reactividad de las partículas coloidales naturales. En cualquier caso, la explicación a las propiedades físicoquímicas de los suelos hay que buscarlas en las características y propiedades de las asociaciones organominerales más que en las de los componentes aislados, ya que los procesos de interasociación pueden alterar en gran medida propiedades tan importantes como la estructura del suelo y su reactividad frente a los compuestos antropogénicos y naturales que a él llegan.Este trabajo ha sido financiado por los proyectos EVK1-CT-2001-00105 de la UE y REN2001-1700-C02-01rrECNO del MCYT.Peer reviewe

    Formulaciones de liberación lenta de herbicidas basadas en montmorillonitas modificadas con cationes orgánicos naturales

    Get PDF
    11 páginas, 4 figuras, 1 tabla, 7 referencias. Comunicación en panel, P-11, presentado a la XIX Reunión científica de la Sociedad Española de Arcillas, 26, 27 y 28 de septiembre de 2005, Salamanca (España).[EN]: To reduce pesticide leaching losses, pesticides can be applied to soil incorporated into a matrix or sorbent, such as organoclays, which limit the amount of pesticide immediately available for undesirable transport losses. To date, most research on organoclays as sorbents of pesticides has dealt with organic cations without specific functional groups, such as alkylammonium-type cations; much less attention has been given to the use of organic cations containing specific polar functional groups in their structure. In this work, two montmorillonites (SWy-2 and SAz-1) modified with different natural and synthetic organic cations (L-carnitine, L-cystine dimethyl ester, and hexadecyltrimethylammonium) were mixed with two pesticides (simazine and imazethapyr) following different protocols (physical mixture, weak-association complex, and strong-association complex), and the resulting organoclay-herbicide complexes were assayed as slow release formulations of the pesticides.Water release kinetics, column leaching profiles, and bioassays demonstrated that organoclays prepared from functionalized natural organic cations can be used as supports in slow release formulations, similar to organoclays prepared from alkylammonium-type cations. The specificity of functionalized organoclays and the use of non-toxic, natural organic cations for their preparation are suggested as important advantages of the use of the proposed organoclays.[ES]: Actualmente los problemas medioambientales asociados al uso de plaguicidas, particularmente de plaguicidas de elevada movilidad, preocupan debido al incremento de la presencia de estos compuestos agroquímicos en aguas superficiales y subterráneas. Con el fin de minimizar las pérdidas por lixiviación, los plaguicidas pueden ser aplicados a los suelos incorporados en matrices o transportadores , que limitan la cantidad del plaguicida disponible para estas pérdidas no deseadas, como son las organoarcillas. Hasta ahora, la mayor parte de la investigación en organoarcillas ha estado relacionada con cationes orgánicos sin grupos funcionales específicos, tales como cationes del tipo alquilamonio, prestándose mucha menor atención a las arcillas modificadas con cationes orgánicos con grupos funcionales polares en su estructura. En este trabajo, dos montmorillonitas (SWy-2 y SAz-1) modificadas con distintos cationes orgánicos de origen natural o sintético y funcionalizados o no (L-carnitina, L-cistina dimetil éster y hexadeciltrimetilamonio) se han mezclado con dos plaguicidas distintos, con simazina (débilmente básico) e imazetapir (plaguicida anfótero), de diversas maneras (mezcla física, complejo débil y complejo fuerte). De esta forma se obtuvieron las formulaciones que se estudiaron como sistemas de liberación lenta de simazina e imazetapir.Este trabajo ha sido financiado por el proyecto del MCYT REN2001-1700-C02-01/TECNO y por el grupo RNM-124 de la Junta de Andalucía.Peer reviewe

    Sorption-desorption of PB(II) by model associations of soil colloids

    Get PDF
    Natural colloids are organomineral associations of multiple soil constituents, which are the main contributors to sorption and transport processes affecting contaminants in soil and water. The importance of individual soil constituents on contaminants sorption is usually evaluated by studying the sorption behaviour on selected soil fractions or by investigating changes in sorption after removing soil constituents, such as Fe oxides or organic matter. An alternative approach is the use of model sorbents.Peer reviewe
    corecore