6,734 research outputs found
A Bayesian Approach for Predicting with Polynomial Regresión of Unknown Degree.
This article presents a comparison of four methods to compute the posterior probabilities of the possible orders in polynomial regression models. These posterior probabilities are used for forecasting by using Bayesian model averaging. It is shown that Bayesian model averaging provides a closer relationship between the theoretical coverage of the high density predictive interval (HDPI) and the observed coverage than those corresponding to selecting the best model. The performance of the different procedures are illustrated with simulations and some known engineering data.
PhyloCSF: a comparative genomics method to distinguish protein-coding and non-coding regions
As high-throughput transcriptome sequencing provides evidence for novel transcripts in many species, there is a renewed need for accurate methods to classify small genomic regions as protein-coding or non-coding. We present PhyloCSF, a novel comparative genomics method that analyzes a multi-species nucleotide sequence alignment to determine whether it is likely to represent a conserved protein-coding region, based on a formal statistical comparison of phylogenetic codon models. We show that PhyloCSF's classification performance in 12-species _Drosophila_ genome alignments exceeds all other methods we compared in a previous study, and we provide a software implementation for use by the community. We anticipate that this method will be widely applicable as the transcriptomes of many additional species, tissues, and subcellular compartments are sequenced, particularly in the context of ENCODE and modENCODE
Mercury in the environs of the north slope of Alaska
The analysis of Greenland ice suggests that the flux of mercury from the continents
to the atmosphere has increased in recent times, perhaps partly as a result of the many of
man’s activities that effect an alteration of terrestrial surfaces. Upon the exposure of fresh
crustal matter, the natural outgassing of mercury vapor from the earth’s surface could be
enhanced.
Accordingly, mercury was measured in a variety of environmental materials gathered
from the North Slope of Alaska to provide background data prior to the anticipated increase
of activity in this environment. The materials were collected during the U. S. Coast Guard
WEBSEC 72-73 cruises as well as through the facilities provided by Naval Arctic Research
Laboratory in the spring of 1973.
The method of measurement depended upon radioactivation of mercury with neutrons
and the subsequent quantification of characteristic gamma radiations after radiochemical
purification.
Mercury concentrations in seawater at several locations in the vicinity of 151°W,
71°N averaged 20 parts per trillion. The waters from all stations east of this location showed
a significantly smaller concentration. This difference may relate to penetration o f Bering-
Chukchi Sea water into the southern Beaufort Sea to 151°W. Marine sediments on the shelf
and slope between 143°W and 153°W contained about 100 parts per billion mercury, except
for those on the continental shelf between Barter Island and the Canning River, where the
concentration was less than half this value. These results are consistent with sediment input
from the respective rivers when their mercury content and mineralogy are considered. The
mercury content of river waters was 18 ppt and in reasonable agreement with the average of
snow samples (13 ppt). The burden of mercury in plankton was 37 ppb.This work was supported by the office of Naval Research under grant N R 083-290
Psychosocial outcomes of an inclusive adapted sport and adventurous training course for military personnel.
PURPOSE: To explore the psychosocial outcomes of an inclusive adapted sport and adventurous training course that aims to support the rehabilitation and personal development of military personnel who have sustained physical and/or psychological disability. METHOD: Narrative life story interviews were conducted with 11 men aged 20-43 taking part in one of the 5-day courses. A thematic narrative analysis was conducted, focusing on accounts that provided insights into personally meaningful psychosocial outcomes of the course. FINDINGS: We identified six themes, falling into two distinct clusters. "Bringing me back to myself" was achieved through the themes of (1) returning to activity, (2) rediscovering a sense of purpose, and (3) reconnecting to others. "New rooms to explore" was realised through (4) experiencing new activities, (5) being valued/respected/cared for and (6) being inspired by other people. CONCLUSION: Involvement in the course stimulated a balance of present- and future-oriented psychosocial outcomes through which participants both recreated aspects of themselves that had been lost through injury/trauma and moved forward with their lives as a result of new horizons of possibility. IMPLICATIONS FOR REHABILITATION: This 5-day inclusive adapted sport and adventurous training course offered meaningful psychosocial outcomes among military personnel who had experienced physical and/or psychological disability. The course helped participants recover aspects of their previous life and self through becoming physically active again, rediscovering a sense of purpose and reconnecting to others. Participants describe a broadening of life horizons as a result of the course, through new activities, being valued/respected/cared for, and being inspired by other people
The Josephson heat interferometer
The Josephson effect represents perhaps the prototype of macroscopic phase
coherence and is at the basis of the most widespread interferometer, i.e., the
superconducting quantum interference device (SQUID). Yet, in analogy to
electric interference, Maki and Griffin predicted in 1965 that thermal current
flowing through a temperature-biased Josephson tunnel junction is a stationary
periodic function of the quantum phase difference between the superconductors.
The interplay between quasiparticles and Cooper pairs condensate is at the
origin of such phase-dependent heat current, and is unique to Josephson
junctions. In this scenario, a temperature-biased SQUID would allow heat
currents to interfere thus implementing the thermal version of the electric
Josephson interferometer. The dissipative character of heat flux makes this
coherent phenomenon not less extraordinary than its electric (non-dissipative)
counterpart. Albeit weird, this striking effect has never been demonstrated so
far. Here we report the first experimental realization of a heat
interferometer. We investigate heat exchange between two normal metal
electrodes kept at different temperatures and tunnel-coupled to each other
through a thermal `modulator' in the form of a DC-SQUID. Heat transport in the
system is found to be phase dependent, in agreement with the original
prediction. With our design the Josephson heat interferometer yields
magnetic-flux-dependent temperature oscillations of amplitude up to ~21 mK, and
provides a flux-to-temperature transfer coefficient exceeding ~ 60mK/Phi_0 at
235 mK [Phi_0 2* 10^(-15) Wb is the flux quantum]. Besides offering remarkable
insight into thermal transport in Josephson junctions, our results represent a
significant step toward phase-coherent mastering of heat in solid-state
nanocircuits, and pave the way to the design of novel-concept coherent
caloritronic devices.Comment: 4+ pages, 3 color figure
X-Ray Scattering at FeCo(001) Surfaces and the Crossover between Ordinary and Normal Transitions
In a recent experiment by Krimmel et al. [PRL 78, 3880 (1997)], the critical
behavior of FeCo near a (001) surface was studied by x-ray scattering. Here the
experimental data are reanalyzed, taking into account recent theoretical
results on order-parameter profiles in the crossover regime between ordinary
and normal transitions. Excellent agreement between theoretical expectations
and the experimental results is found.Comment: 9 pages, Latex, 1 PostScript figure, to be published in Phys.Rev.
A comparative study for the pair-creation contact process using series expansions
A comparative study between two distinct perturbative series expansions for
the pair-creation contact process is presented. In contrast to the ordinary
contact process, whose supercritical series expansions provide accurate
estimates for its critical behavior, the supercritical approach does not work
properly when applied to the pair-creation process. To circumvent this problem
a procedure is introduced in which one-site creation is added to the
pair-creation. An alternative method is the generation of subcritical series
expansions which works even for the case of the pure pair-creation process.
Differently from the supercritical case, the subcritical series yields
estimates that are compatible with numerical simulations
A grid-based infrastructure for distributed retrieval
In large-scale distributed retrieval, challenges of latency, heterogeneity, and dynamicity emphasise the importance of infrastructural support in reducing the development costs of state-of-the-art solutions. We present a service-based infrastructure for distributed retrieval which blends middleware facilities and a design framework to ‘lift’ the resource sharing approach and the computational services of a European Grid platform into the domain of e-Science applications. In this paper, we give an overview of the DILIGENT Search Framework and illustrate its exploitation in the field of Earth Science
Thermal Impact on Spiking Properties in Hodgkin-Huxley Neuron with Synaptic Stimulus
The effect of environmental temperature on neuronal spiking behaviors is
investigated by numerically simulating the temperature dependence of spiking
threshold of the Hodgkin-Huxley neuron subject to synaptic stimulus. We find
that the spiking threshold exhibits a global minimum in a "comfortable
temperature" range where spike initiation needs weakest synaptic strength,
indicating the occurrence of optimal use of synaptic transmission in neural
system. We further explore the biophysical origin of this phenomenon in ion
channel gating kinetics and also discuss its possible biological relevance in
information processing in neural systems.Comment: 10 pages, 4 figure
- …
