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Abstract

This article presents a comparison of four methods to compute the posterior
probabilities of the possible orders in polynomial regression models. These posterior
probabilities are used for forecasting by using Bayesian model averaging. It is shown
that Bayesian model averaging provides a closer relationship between the theoretical
coverage of the high density predictive interval (HDPI) and the observed coverage
than those corresponding to selecting the best model. The performance of the
di¤erent procedures are illustrated with simulations and some known engineering
data.

Key words: Bayesian Model Averaging; Fractional Bayes factor; Intrinsic Bayes factor;
Bayesian Information Criterium.

1 Introduction

In many engineering situations where the response variable of interest is a polynomial
function of an independent variable an important problem is to determine the degree of
the polynomial. From the frequentist point of view, the most common approaches are:
(1) applying a variable selection method (e.g. forward or backward selection) which uses
the t statistic for testing the coe¢cient of the highest order polynomial; and (2) selecting
the model by an order determination criteria, such as that of Akaike (1973) and others.
From the Bayesian point of view two alternative options are available: (1) determining
the order of the polynomial by means of the Bayes factors; and (2) using an asymptotic
approximation to the posterior model probabilities, such as the Schwarz (1978) criterion,
Philips and Guttman (1998) and others.

Although these approaches are very useful for selecting the model that seems to have
generated the data, they are less useful for forecasting purposes when there is a consider-
able uncertainty regarding the degree of the polynomial. In particular, the highest poste-
rior prediction intervals, or the con…dence intervals for the parameters, may be too short
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because the uncertainty about the degree of the polynomial involved is not completely
taken into account. In this paper we …rst compare di¤erent procedures for computing the
posterior probabilities for di¤erent polynomial degrees and then we take into account the
model uncertainty for forecasting using Bayesian model averaging (BMA).

The problem of computing posterior probabilities for models using non informative
priors has been the subject of much recent research. Several authors have proposed the
use of training samples in order to avoid the problem of the constant indetermination
of the Bayes factors when improper priors are used, see Atkinson (1978), Gelfand and
Chang (1992), Lempers (1971) and San Martini and Spezzaferri (1984). Spiegelhalter
and Smith (1982) proposed the use of an imaginary training sample to determine the
ratio of constants that appear in the Bayes factors. They assume a minimal training
sample, which is such that this imaginary sample does not provide evidence in favor of
any model. Geisser and Eddy (1979) base their analysis on part of the sample chosen in
certain optimal ways. In a similar way, Gelfand and Ghosh (1998) proceed by minimizing
certain posterior losses found for given models. See Gelfand and Dey (1994) for a review
of the literature. O’Hagan (1995) proposed the use of fractional Bayes factors and shows
that his method preserves the asymptotic properties of the Bayes factors. Finally, Berger
and Pericchi (1996a, 1996b) proposed the use of the intrinsic Bayes factor. They used
the training sample of minimal size which makes the posterior density of the parameter
proper.

Bayesian model averaging leads to forecasts which are a weighted average of the predic-
tive densities obtained by considering all possible polynomial degrees with weights equal
to the posterior probabilities of each degree. See Draper and Guttman (1987). Accord-
ingly, BMA takes into account the uncertainty about the di¤erent models, as was pointed
out in the seminal work of Leamer (1978). This method was not operational in the past
due to its heavy computational requirements, but the possibilities opened up by using
MCMC methods have made the method computationally feasible. George (1999) reviews
Bayesian model selection and discusses BMA in the context of decision theory, Draper
(1995), Chat…eld (1995) and Kass and Raftery (1995) review BMA and the cost of ignor-
ing the model uncertainty. Hoeting et al. (1999) present a review of BMA emphasizing
the implementation and practical matters. For linear regression models there is an ex-
tensive literature, see e.g. Raftery et al. (1997) who proposed the BMA implementation
in MC3 and Occam’s window, Fernandez et al. (2002) who carry out BMA for a large
number of possible regressors and also provide an automatic prior structure that can be
used in these cases.

Some framework for the problem is as follows: Let fM1;M2; : : : ;MKg be the space of
all the models under consideration and let y be the vector of observations. Suppose that
the prior p (µijMi) = cig(µi) is improper, that is the integral of g(µi) diverges. Then the
marginal distribution of the data when Mi holds is given by

p (yjMi) = ci

Z
p (yjµi;Mi) g(µi)dµi;
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and the posterior probability that model Mi holds is

p (Mijy) = ci (m (y))¡1
·Z

p (yjµi;Mi) g(µi)dµi

¸
p(Mi) (1)

where m (y) =
PK

i=1 p (y jMi ) p (Mi) and p(Mi) is the prior probability that Mi holds.
This probability depends on the unknown constant ci: Thus, we have that the Bayes factor
for comparing two models, Mi and Mj; is

Bij =
p (Mijy)
p (Mjjy) =

ci
cj

£R
p (yjµi;Mi) g(µi)dµi

¤£R
p (yjµj ;Mj) g(µj)dµj

¤ p(Mi)

p(Mj)
(2)

and it depends on the unknown and indeterminate ratio ci=cj:

For a given modelMi the posterior predictive distribution, p(yf jy;Mi) when predicting
a future observation, yf ; is given by

p (yf jy;Mi) =

Z
p (yf jµi;Mi) p (µijy;Mi) dµi (3)

where p (µijy;Mi) is the posterior distribution for the parameters that are involved in
model Mi. This predictive distribution takes into account the variability of the param-
eters, measured by p (µijy;Mi) : The unconditional predictive distribution is then found
by

p (yf jy) =
KX
k=1

p (yf jy;Mk) p (Mkjy) : (4)

We will use (4) in the sequel and refer to it is Bayesian Model Averaging (or BMA for
short), for indeed (4) is a weighting of predictives of yf under models Mk; k = 1; : : : ;K
with the weights given by the posterior probabilities that model Mk holds.

This equation can also be written as, inserting (3) in (4),

p (yf jy) =
KX
k=1

p (Mkjy)
Z
p (yf jµi;Mi) p (µijy;Mi) dµi

which takes into account both the parameter variability and the model variability.

This paper is organized as follows. In Section 2, the polynomial model is presented and
an informative prior for the model space is introduced. This prior favors the parsimony
principle with respect to the degree of the polynomial. In Section 3, we present four
di¤erent approaches to the problem. The …rst one is a procedure for computing the
posterior probabilities of the model based on the work by Philips and Guttman (1998).
This method averages over subsets of all possible available training samples to avoid the
possible sensitivity of a particular training sample in this problem. The second one is the
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intrinsic Bayes factor of Berger and Pericchi (1996b). The third one is an approximate
method based on the Bayesian Information Criterion (BIC), proposed by Schwarz (1978)
and the fourth is the fractional Bayes factor proposed by O’Hagan (1995). The last
subsection presents a brief summary of these four methods. In Section 4, we study the
predictive distribution for this problem. The methods presented are compared in a Monte
Carlo study in Section 5, and using some real data examples in Section 6. Finally, Section
7 gives some concluding remarks.

2 The polynomial model and the prior.

We focus here on the general polynomial regression model, Mj

y = ¯0 + ¯1x+ :::+ ¯jx
j + ²;

where ² is N(0; ¾2) and where the degree j is unknown, but assumed to be such that
0 · j · d: In order to estimate j; a sample of values (xi; yi) have been obtained for
i = 1; :::; n: Thus, for some j; the observations are generated by

y = Xj¯j+² (5)

where ¯j = (¯0; ::::; ¯j)
0; y = (y1;::::; yn)

0 ; and Xj = (1;x;x2; :::;xj); with the n £ 1
column vector xk given by xk= (xk1;::::; x

k
n)
0: Then, under model Mj

E(yjMj) =

jX
i=0

¯ix
i j = 0; 1; : : : ; d:

To compute the posterior probabilities that model Mj holds (i.e., the degree is j) using
(1), we would need the normalizing constant (m (y))¡1 : However, the normalizing con-
stant cannot at this point be determined simply by using the fact that

PK
j=1 p (Mj jy) = 1;

because the models under consideration have di¤erent dimensional parameter space (we
discuss this problem in Section 3 of this paper). But we do note that we may …nd
p (Mj jy) ; say, by employing Bayes factors Bij, for it is straightforward to show that

p (MjjD) = p (DjMj) p (Mj)PK
i=1 p (DjMi) p (Mi)

=

"
KX
i=1

Bij
p (Mi)

p (Mj)

#¡1
; (6)

where, Bij = p (D jMi ) =p (D jMj ) is the needed Bayes factor. It is important to note that
when improper priors are used, the Bayes factors do depend on the unknown indeterminate
ratio ci=cj -see (2). Also, we have used the notation D to denote the data (Xd;y) with the
understanding that for Model i; i < k; then a subset of D is to be used, namely (Xi;y).
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2.1 The prior for the models

We consider two possible choices for the prior distribution p(Mj): The …rst choice is the
uniform distribution over the set of possible orders, j = 0; 1; : : : ; d; that is

p (Mj) = (d+ 1)
¡1: (7)

The second choice for p(Mj) is a prior that penalizes the degree of the polynomial. We
use a truncated geometric prior distribution over the degree of the polynomial,

p (Mj) =
(1¡ q)
(1¡ qd+1)q

j j = 0; 1; 2; : : : ; d (8)

for 0 < q < 1; where j is the degree of the model. We are interested in choosing a model,
given the data, as parsimonious as possible, and, with this aim, we have chosen the prior
(8) that favors M0; so that a priori E (Y) = ¯0: Making a correspondence between J
and Mj; this implies that we should choose the prior in such a way that E (J) < 0:5;

that is, E (J) = q
(1¡q)

1¡(d+1)qd+dqd+1
(1¡qd+1) < 0:5; which as may be veri…ed, holds if we choose

q < 1=3: The prior (8) decreases as j increases, and has the advantage that the ratios
p (Mj) =p (Mj+1) are constant for j = 0; :::; d¡ 1.

3 Methods for obtaining the posterior probability of
the models

3.1 The constant dimension method

As indicated in the previous section when using a reference prior for the parameters, we
have the problem that di¤erent modelsMj have parameter spaces of di¤erent dimensions.
To avoid this problem, following Philips and Guttman (1998), we …rst rede…ne Mj as
follows:

Mj : y = (1; x; :::; x
j ; 0; :::; 0)¯d + ²;

where, as before, ² is N(0; ¾2). Secondly, we select at random a training sample of size
m = d + 2 out of n observations. We index the use of a particular training sample of

size m by t; t = 1; :::; T =

µ
n
m

¶
: Then we assume, from now on, that the …rst m

observations of the y vector, say yt; and the …rst m rows of the Xd matrix, say Xt (d) ;
pertain to the training sample, so that Dt = (Xt(d);yt) corresponds to the training
sample. Suppose that the standard non informative prior for (¯d; ¾

2) is used. Then, the
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posterior distribution for the parameters given the training sample is

p(¯d; ¾
2jDt) = K1(¾

2)¡(
m
2
+1) exp

µ
¡ 1

2¾2
(yt ¡Xt(d)¯d)

0
(yt ¡Xt(d)¯d)

¶
(9)

where K1 is a constant depending only on t. Now, we use the posterior (9) as a prior for
the remaining analysis. We need the following notation. Let the (n¡m)£ (d+1) matrix
X(¡t)(d) and the (n¡m)£1 vector y(¡t) be the corresponding matrix and vector obtained
by deleting them rows fromXd and y. Further, we denote byX(¡t) (j) a (n¡m)£(d+1)
matrix obtained fromX(¡t)(d) that has its last d¡j columns replaced by (n¡m)£1 vectors
of zeros. We may now denote a new n £ (d + 1) matrix appropriate to the assumption
that Mj holds by

Zj =

µ
Xt(d)
X(¡t) (j)

¶
(10)

and the partitioned vector of observations by

z =

µ
yt
y(¡t)

¶
;

to be used, assuming Mj holds, in the model

E (z) = Zj¯d:

The joint posterior for the parameters and a particular model is

p(¯d; ¾
2;MjjD; t) _ p(DjMj ;¯d; ¾

2)p(¯d; ¾
2jDt)p(Mj)

where we have assumed independence of Mj and (¯d; ¾
2) a priori, and the prior p(¯d; ¾

2jDt)
is given by (9). Thus, we can compute the joint posterior by combining this prior with
the likelihood arising from the polynomial regression model based on y(¡t) and X(¡t) (j)
and we obtain

p(¯d; ¾
2;MjjD; t) _ p(Mj)(¾

2)¡(n=2+1) exp
µ
¡ 1

2¾2
(z¡ Zj¯d)

0
(z¡ Zj¯d)

¶
: (11)

The result (11) arises from the assumption E(y(¡t)jMj) = X(¡t) (j)¯d which in turn
implies ¯j+1 = ::: = ¯d = 0 so that Mj is a jth degree polynomial. We note that Zj has
non zero entries in the …rst m rows of its …rst d¡ j columns, so that under the plausible
assumption that this matrix is non singular, we can write

p(¯d; ¾
2;MjjD; t) _ p(Mj)(¾

2)¡(n=2+1) (12)

exp

·
¡ 1

2¾2

³
Sj + (¯d ¡ b̄dj)0Z0jZj(¯d ¡ b̄dj)´¸

where b̄
dj = (Z

0
jZj)

¡1Z0jz
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and the sum of squares of the residuals is given by

Sj = z
0(In ¡ Zj(Z0jZj)¡1Z0j)z: (13)

Finally, the model posterior probabilities are found integrating (12) over the d + 2
parameter space, and we obtain

p(MjjD; t) = K2(S
n¡d¡1
j

¯̄̄
Z
0
jZj

¯̄̄
)¡1=2p(Mj)

where K2 is given by

K2 =

"
dX
j=0

³
Sn¡d¡1j

¯̄̄
Z
0
jZj

¯̄̄´¡1=2
p(Mj)

#¡1

The posterior probabilities depend on the training sample and, if the sample size is
not large, this dependency could be important. In order to avoid this problem we may

compute p(MjjD) by averaging over all T =
µ
m
n

¶
possible training samples of size m.

Then, we de…ne

p(MjjD) = 1

T

TX
t=1

p(MjjD; t) =

=
1

T

TX
t=1

K2(S
n¡d¡1
j

¯̄̄
Z
0
jZj

¯̄̄
)¡1=2p(Mj)

Now, we recall that the prior (8) penalizes the degree of the polynomials and if this
prior is employed, we readily …nd that

p(MjjD) = K3
1

T

TX
t=1

qj(Sn¡d¡1j

¯̄̄
Z
0
jZj

¯̄̄
)¡1=2:

The computation of this probability may involve a large number of terms. Our proposal
then is to take two subsets of training samples of size T0 and based on each compute
p(MjjD; T (1)0 ) and p(MjjD;T (2)0 ): If

sup
j

¯̄̄
p(MjjD; T (1)0 )¡ p(MjjD;T (2)0 )

¯̄̄
· ± (14)

for some small ± we stop. Otherwise, we increase the size of T0 until the previous condition
is met.
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3.2 Intrinsic Bayes factors.

Berger and Pericchi (1996a, 1996b) proposed to solve the indetermination problem by
using intrinsic Bayes factors. The idea of the procedure is as follows. Note that

Bij =
p (DjMi)

p (DjMj)
=
p(D(¡t)jDt;Mi)p(DtjMi)

p(D(¡t)jDt;Mj)p(DtjMj)
= Bij (t)B

t
ij ;

where Bij (t) is the conditional Bayes factor given the data in the training sample and Btij
is the Bayes factor using only the training sample. Thus, we have that

Bij (t) = BijB
t
ji:

Here, D(¡t) refers to the data
¡
X(¡t);y(¡t)

¢
:

Suppose that we use non informative priors, so that Bij and Btji depend, as shown in
(2), on unknown constants. Then, these constants will be cancelled out when computing
the conditional Bayes factor. As the conditional Bayes factor depends on the training
sample, Berger and Pericchi propose several types of averaging over all the possible train-
ing samples. One of their proposals is the use of the arithmetic intrinsic Bayes factor
which is de…ned as follows

BAIij =
1

T

TX
i=1

Bij(t):

For normal errors, Berger and Pericchi (1996a) …nd that Bij(t) can be computed by

Bij(t) = Cij

¯̄
X0
jXj

¯̄1=2 jX0
t(i)Xt(i)j1=2

jX0
iXij1=2 jX0

t(j)Xt(j)j1=2
R
(n¡j¡1)=2
j Rt(i)

1=2

R
(n¡i¡1)=2
i Rt(j)1=2

;

whereXj is the n£(j + 1) design matrix with the complete data, with columns (1; x; :::; xj);
Xt(j) is the t £ (j + 1) formed by the rows of Xj corresponding to the training sample,
Rj = y0(In ¡ Xj(X

0
jXj)

¡1X0
j)y is the sum of square of the residuals for Xj, Rt (i) =

y0(t)(It¡Xt(j)(X
0
t(j)Xt(j))

¡1X0
t(j))y(t) is the sum of square of the residuals for the train-

ing sample, and

Cij =
¡
¡
n¡i¡1
2

¢
¡
¡
i¡j+1
2

¢
¡
¡
n¡j¡1
2

¢
¡
¡
1
2

¢ :

Then, the posterior probabilities can be computed by

p (MjjD) =
"
KX
i=1

BAIij
p (Mi)

p (Mj)

#¡1
: (15)

The arithmetic intrinsic Bayes factor is very expensive to compute, and as Berger and
Pericchi commented, is unstable for small sample sizes. With this as background, the
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authors recommended the use of the expected intrinsic Bayes factor, which in nested
models with Mi ½Mj ; can be computed by

BEAIij = C¤ij

¯̄
X0
jXj

¯̄1=2 jX0
t(i)Xt(i)j1=2

jX0
iXij1=2 jX0

t(j)Xt(j)j1=2
µ
Ri
Rj

¶¡ (n¡i¡1)
2

£ exp (¡¸ij (t) =2)M (1=2; (j ¡ i+ 1)=2; ¸ij (t) =2) ;
where

C¤ij = Cij

Ã
¡

µ
1

2

¶¡1!µ
n¡ i¡ 1

2

¶(j¡i)=2
; (16)

¸ij (t) =
Ri

n¡ j ¡ 1¯
0
iX

0
i (l)

h
I¡Xi (t) (X

0
i (t)Xi (t))

¡1
X0
i (t)

i¡1
Xi (l)¯i; (17)

and M (a; b; c) is Kummer’s function (see Abramowitz and Stegun, 1970, chapter 13).
Then, they de…ne BEAIji = 1=BEAIij : We use the expected intrinsic Bayes factor for the
comparison of the posterior probabilities.

3.3 Fractional Bayes factor

O’Hagan (1995) proposed the use of a modi…ed Bayes factor to avoid the problem of
indetermination when non informative priors are used. This is called fractional Bayes
factor. For a data set D = (y;X) ; it is de…ned as

Bbij(D) =
qi (b;D)

qj (b;D)
; (18)

where b = m=n and m is the size of the minimal training sample, with

qi (b;D) =

R
g (µi) pi (yjµi;Mi) dµiR
g (µi) [pi (yjµi;Mi)]

b dµi
; (19)

g (µi) the prior distribution for the parameters, and where pi (yjµi;Mi) is the full likeli-
hood, under the modelMi. Note that if b = 0; that is there is no training sample involved
so that (18) is just the standard Bayes factor, Bij(D) =B0ij(D) for comparing models Mi

and Mj. The posterior probability for a model can now be written as

p (MjjD) =
"
KX
i=1

Bbij
p (Mi)

p (Mj)

#¡1
: (20)

We may now compute qj (b;D) for the polynomial model (5) using a non informative
prior for the parameters µj = (¯d; ¾

2) ; given by g (µj) = p (¯d; ¾
2) / ¾¡2: Then, the

denominator of qi (b;D) in (19) is
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Z
g (µi) [pi (yjµi;Mi)]

b dµi = (2¼)
¡nb=2 £

£
Z
¾¡(

nb
2
+1) exp

½
¡ b

2¾2

³
Ri + (¯d ¡ b̄di)0X0

iXi(¯d ¡ b̄di)´¾ d¯dd¾2;
where, b̄di = ¡X0

iXi

¢¡1
X0
iy and

Ri = y
0(In ¡Xi(X

0
iXi)

¡1X0
i)y: (21)

Integrating with respect to ¾2; and ¯d; we have that the denominator of qi (b;D) is

Z
g (µi) [pi (yjµi;Mi)]

b dµi =
1

2
(¼Ri)

¡w=2 b¡nb=2¡
³w
2

´
jX0

iXij¡1=2 ;

where w = nb¡d¡1 are the degrees of freedom. As the numerator of qi (b;D) is identical
with b = 1; we then have that

qi (b;y) =

R
g (µi) pi (yjµi;Mi) dµiR
g (µi) [pi (yjµi;Mi)]

b dµi
=
¡
¡
v
2

¢
¡
¡
w
2

¢b+nb=2 (¼Ri)¡n(1¡b)=2 :
For our polynomial problem, the minimum sample size which makes the prior proper

for the parameters is m = d+2, and then, b = m=n = (d+2)=n: In order to compute the
posterior probability for the models we use

Bbki(D) =
¡
¡
n¡k¡1
2

¢
¡
¡
nb¡i¡1

2

¢
¡
¡
nb¡k¡1

2

¢
¡
¡
n¡i¡1
2

¢ µRk
Ri

¶¡n(1¡b)=2
; (22)

and from (20) the model posterior probabilities are

p (Mj jD ) = KFBF

¡
¡
n¡j¡1
2

¢
¡
¡
d+1¡j
2

¢ (Rj)¡(n¡d¡2)=2 ;
where

KFBF =
dX
i=0

¡
¡
n¡i¡1
2

¢
¡
¡
d+1¡i
2

¢ (Ri)¡(n¡d¡2)=2 :

10



3.4 The BIC approximation

An alternative approach is to compute the posterior probabilities p (MjjD) using the BIC
approximation. The Schwarz criterion for Mi is de…ned as

S (Mi) = log pi

³
yjbµi´¡ 1

2
di log n;

where bµi is the MLE of the parameter vector under model Mi and di is the dimension of
the vector µi: The Bayesian information criterion (BIC) of a model Mi is

BIC (Mi) = ¡2S (Mi) ;

and as Kass and Raftery (1995) pointed out, exp (S (Mi)¡ S (Mj)) approximates the
Bayes factor Bij with a relative error O (1) : Then, we can approximate the Bayes factors
by

BBICij = exp (S (Mi)¡ S (Mj)) =
exp (¡0:5BIC (Mi))

exp (¡0:5BIC (Mj))

and obtain the posterior probability for a model by

p (MjjD) / p (Mj) exp

µ
log pj

³
yjbµj´¡ 1

2
dj log n

¶
:

The likelihood for a normal linear model evaluated at the MLE estimator bµj of (¯d; ¾)
is easily seen to be

pj

³
yjbµj´ = (2¼)¡n=2µRj

n

¶¡n=2
e¡n=2;

and the posterior probability of Mj, may be approximated, after absorbing common con-
stants, by

p (MjjD) = KBIC ¢ p (Mj)R
¡n=2
j n¡(j+1)=2;

where

KBIC =
dX
j=0

R
¡n=2
j n¡(j+2)=2:

3.5 Some comparison of the methods

Let pAB (Mj jD ) be the posterior probabilities of model Mj using method A; where A =
fCDM ; IBF ;FBF ;BICg; denotes the four methods presented in the previous sections,
(constant dimension (CD), Intrinsic Bayes Factor (IBF), Fractional Bayes Factors (FBF)
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and the BIC approximation), and B = fI; NIg denotes the use of informative or non
informative priors for the models. Then, for the constant dimension method presented in
section 3.1 the posterior probabilities are given by

pCDMI(MjjD) = K2
1

T

TX
t=1

qj(Sn¡d¡1j

¯̄̄
Z
0
jZj

¯̄̄
)¡1=2

pCDMNI(MjjD) = K3
1

T

TX
t=1

(Sn¡d¡1j

¯̄̄
Z
0
jZj

¯̄̄
)¡1=2

where Zj and Sj are given by (10) and (13).

For the intrinsic Bayes factors presented in 3.2, we will use the expected intrinsic Bayes
factor, which leads to

BEAIij = C¤ij

¯̄
X0
jXj

¯̄1=2 jX0
t(i)Xt(i)j1=2

jX0
iXij1=2 jX0

t(j)Xt(j)j1=2
µ
Ri
Rj

¶ (n¡i¡1)
2

£ exp (¡¸ij (t) =2)M (1=2; (j ¡ i+ 1)=2; ¸ij (t) =2) ;

where the constants C¤ij and ¸ij are given by (16) and (17) respectively, with Ri de…ned
by (21), so that the posterior probability can be obtained by

pIBFI(MijD) =
Ã

KX
k=1

qj

qi
BEAIki

!¡1

pIBFNI(MijD) =
Ã

KX
k=1

BEAIki

!¡1

For the fractional Bayes factor, presented in section 3.3, the posterior probabilities are
given by

pFBFI(MjjD) = K4q
j¡
¡
n¡j¡1
2

¢
¡
¡
d¡j+1
2

¢R¡(n¡d¡2)=2j

pFBFNI(MjjD) = K5

¡
¡
n¡j¡1
2

¢
¡
¡
d¡j+1
2

¢R¡(n¡d¡2)=2j

Finally, the BIC approximations of the posterior probabilities are

pBICI(MjjD) = K6q
jR

¡n=2
j n¡(j+2)=2

pBICNI(MjjD) = K7R
¡n=2
j n¡(j+2)=2:

12



The posterior probabilities computed by the FBF and BIC methods have a similar
functional form but di¤er in the penalty function that is given by

pnB (n; j) = n
¡(j+2)=2

pnF (n; j; d) =
¡
¡
n¡j¡1
2

¢
¡
¡
d¡j+1
2

¢
and we note that the penalty function for the BIC method, pnB, is decreasing with n;
whereas the penalty function for the FBF; pnF ; is increasing with nn=2: To show this,
using Stirling’s approximation,

log ¡ (x+ 1) ¼ 1

2
log (2¼) +

µ
x+

1

2

¶
log x¡ x

so that,

log (pnF (n; j; d)) = log ¡

µ
n¡ j ¡ 1

2

¶
¡ log ¡

µ
d¡ j + 1

2

¶
log (pnF (n; j; d)) ¼ 1

2
(n¡ j ¡ 2) log (n¡ j ¡ 3)¡ 1

2
(d¡ j ¡ 2) log (d¡ j ¡ 3)

+
1

2
(¡n+ d+ 6) log 2

log (pnF (n; j; d)) ¼ 1

2
(n¡ j ¡ 2) log (n¡ j ¡ 3)¡ n

2
log 2 + h (j; d)

In order to compare these penalty functions we standardize them to sum to one, yielding

pnsB (j) =
pnB (j)P
j pnB (j)

pnsF (j) =
pnF (j)P
j pnF (j)

so that after some algebra, we have

pBICNI(MjjD) = (K7L7) (pnsB (j))R
¡n=2
j

pFBFNI(MjjD) = (K5L5) (pnsF (j))R
¡(n¡d¡2)=2
j

where L7 =
P

j pnB (j) and L5 =
P

j pnF (j) so that the standardized penalty constants
are grouped with the standardized constants. The standardized penalty function of BIC
depends on the maximum degree d; only through its denominator. Figure (1) shows these
standardized penalty functions as a function of the sample size, n; for j = 0; 1; 2 with
maximum degree d = 5; while Figure (2) does the same for d = 10: In both cases n is
allowed to vary between 50 and 500. These …gures show that BIC penalizes more than
FBF; while BIC gives more weight to the model with lowest degree and thus it gives less
weight than the FBF to polynomials of higher degree.
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Figure 1: Standardized penalty of BIC method - dash-dot line-, and FBF method -solid
line- where the maximum degree d is 5, for the models, constant, j = 0; linear, j = 1; and
quadratic j = 2.
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Figure 2: Standardized penalty of BIC method - dash-dot line-, and FBF method -solid
line- where the maximum degree d is 10, for the models constant, j = 0; linear, j = 1;
and quadratic j = 2.
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Model y = ¾2

M1 2 + x+ " 1
M2 3¡ x+ " 1
M3 10¡ 2x2 + " 5
M4 ¡10¡ 3x+ x2 + " 5
M5 3 + 10x¡ 2x3 + " 10
M6 ¡4 + x¡ 3x2 + x3 + " 10

Table 1: Model used in the Monte Carlo study. In all the six cases the distribution of the
error term is N(0,I¾2)

4 Simulations

In this section we compare, using a Monte Carlo study, the procedures presented in
the previous section. In addition, we study the e¤ect of the prior distribution on these
procedures using the two priors de…ned by (7) and (8). We envisage the following scenario:
we generate observations by using a model Mj of Table (1), (see Figure 3 for a sample
generated from each one of these models), where the x values are equally spaced in the
interval [¡3; 3] so that the sample size in each case is n = 61: N = 100 replications
have been generated from each model. For each replication, polynomial models of order
0; 1; :::; d = p + h; where p is the correct degree of each model and h = 0; 1; 2; 3; 4; are
…tted and the posterior probabilities for each possible order are computed by using the
previous eight methods described in section 3.5.

The number of training samples used in the CD method is NT = min (100; T0) and T0
satis…es (14) for ± = 10¡3. The value of NT depends of the number d of di¤erent models
whose posterior probability we want to estimate and broadly increases linearly with the
number of regessors. The empirical relationship found in this case between NT and d is
shown in Figure 4.

4.1 Posterior probabilities of the models

Table 2 shows the posterior probability for the correct degree for each of the eight methods
. We emphasized, highlighting in bold type, the maximal posterior probability for each
model and for each value of d: The …rst three models present small uncertainty about the
correct degree and for them the posterior probabilities of the correct degree are very high
for all the methods. The last three models show more uncertainty and only for h = 0 the
posterior probability with some of the methods is higher than 0.9.

When h increases, the posterior probabilities for the correct degree decreases, as ex-
pected. With regard to the prior, for models of small degree (see M1¡M3) the probabil-
ities are higher with the informative prior whereas we this e¤ect changes for higher order
models (for instance, compare model 1 and model 6). With respect to the four methods
compared, there are some di¤erences between model of low order, as the …rst two models
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Figure 3: One replication for the six models under study.
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Figure 5: Posterior probabilities for di¤erent degrees in the model 3, computed with non
informative prior, when h grows from 0 to 4.

that are linear and the last two models that are of third degree. For the low order models
IBFI is the best method, and FBFI and BICI also seem to work very well. For the last
two BICI and FBFI show similar results. From the point of view of robustness to the
value of h the two methods less a¤ected are the BIC and the IBF and this important
property and their good overall performance lead us to recommend them.

In order to understand better the properties of the four methods Figure (5) shows
the distribution of the values of the posterior probabilities computed for model 3; for all
the possible degrees, j = 0; : : : ; 2 + h; for …ve di¤erent values of h ( h = 0; 1; 2; 3; 4):
Because of space limitations, Figure (5) presents only the results for model 3 when the
non informative prior is used, but the patterns are similar for other models. First note
that IBF and BIC are the most robust to the value of h; a fact suggested in Table 2.
Second, note that IBF penalizes more than BIC the degree of the polynomial, and BIC
more than FBF , as it is to be expected from the analysis in section 3.5. The CDM shows
a less stable pattern and the highest probabilities correspond …rst to the correct model
and second to the model of maximum order included in the analysis.

4.2 Predictive Distributions

In order to compare the prediction ability of the four methods, we have generated obser-
vations at ten points equally spaced in the interval xh = [¡3; 3]; and have computed the
response at these points from the six models described in Table 1. The process is repeated
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M1 h CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.9572 0.7154 0.9916 0.9224 0.9725 0.7971 0.9788 0.8283
2 0.9698 0.6923 0.9939 0.9291 0.9770 0.7630 0.9734 0.7363
3 0.9894 0.7884 0.9939 0.9118 0.9790 0.7356 0.9691 0.6511
4 0.9911 0.8559 0.9921 0.9067 0.9723 0.7393 0.9568 0.6048

M2 h CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.9578 0.7130 0.9936 0.9321 0.9736 0.7911 0.9799 0.8232
2 0.9771 0.7276 0.9951 0.9375 0.9835 0.8008 0.9799 0.7720
3 0.9902 0.8069 0.9945 0.9269 0.9798 0.7608 0.9702 0.6739
4 0.9896 0.8621 0.9901 0.9101 0.9701 0.7518 0.9557 0.6155

M3 h CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI
0 0.9960 0.9999 0.9937 0.9999 0.9983 1.0000 0.9971 1.0000
1 0.9292 0.6349 0.9835 0.8906 0.9710 0.8082 0.9780 0.8364
2 0.9291 0.5691 0.9885 0.8807 0.9744 0.7662 0.9712 0.7399
3 0.9563 0.6980 0.9876 0.8688 0.9755 0.7633 0.9660 0.6795
4 0.9526 0.7573 0.9843 0.8399 0.9707 0.7351 0.9559 0.5973

M4 h CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI
0 0.8635 0.9654 0.7494 0.9220 0.8672 0.9685 0.8310 0.9580
1 0.7999 0.6034 0.8040 0.8833 0.8871 0.8006 0.8778 0.8302
2 0.6854 0.5018 0.7790 0.8179 0.8440 0.7277 0.8405 0.7064
3 0.6652 0.5806 0.7801 0.8075 0.8301 0.7067 0.8257 0.6345
4 0.5264 0.6299 0.7349 0.8128 0.8132 0.7268 0.8090 0.5998

M5 h CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI
0 0.7434 0.9774 0.7295 0.9741 0.8230 0.9919 0.7977 0.9900
1 0.5595 0.4879 0.7570 0.8343 0.8636 0.8133 0.8652 0.8440
2 0.4033 0.3671 0.7651 0.7760 0.8374 0.7375 0.8500 0.7151
3 0.3452 0.4701 0.8336 0.7857 0.8887 0.7525 0.8958 0.6703
4 0.2056 0.4670 0.8432 0.7736 0.8536 0.7029 0.8582 0.5715

M6 h CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI
0 0.7100 0.9214 0.4334 0.7320 0.6530 0.8942 0.5887 0.8605
1 0.5086 0.4218 0.4076 0.6344 0.5753 0.6833 0.5562 0.7098
2 0.3995 0.3064 0.4452 0.6675 0.6064 0.6568 0.6008 0.6478
3 0.3999 0.3711 0.5143 0.7042 0.6441 0.6769 0.6442 0.6172
4 0.2260 0.3409 0.4127 0.6556 0.5844 0.6664 0.5898 0.5675

Table 2: Posterior probability of the correct degree of the model
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Mod Meth CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI mean
M1 BMA 0.00 -0.01 -0.03 -0.04 -0.01 -0.09 -0.02 -0.08 -0.03
M1 SBM -0.05 -0.15 -0.05 -0.11 -0.05 -0.14 -0.05 -0.30 -0.11
M2 BMA -0.12 -0.11 -0.12 -0.14 -0.12 -0.19 -0.16 -0.09 -0.13
M2 SBM -0.12 -0.16 -0.12 -0.16 -0.12 -0.18 -0.12 -0.31 -0.16
M3 BMA -0.59 -0.59 -0.65 -0.66 -0.67 -0.67 -0.65 -0.66 -0.64
M3 SBM -0.64 -0.84 -0.66 -0.76 -0.64 -0.76 -0.64 -0.90 -0.73
M4 BMA -0.30 -0.38 -0.56 -0.47 -0.60 -0.63 -0.53 -0.64 -0.51
M4 SBM -1.12 -0.92 -0.97 -0.91 -0.90 -0.78 -0.82 -0.92 -0.92
M5 BMA -1.26 -1.04 -1.02 -1.36 -1.57 -1.41 -1.06 -1.50 -1.28
M5 SBM -4.55 -2.48 -2.60 -1.56 -3.31 -1.61 -2.09 -1.60 -2.48
M6 BMA -0.06 -0.10 -0.32 -0.15 -0.53 -0.37 -0.41 -0.31 -0.28
M6 SBM -1.23 -0.95 -1.16 -0.88 -1.25 -0.87 -1.12 -0.59 -1.01

mean BMA -0.39 -0.37 -0.45 -0.47 -0.58 -0.56 -0.47 -0.54 -0.48

mean SBM -1.29 -0.92 -0.93 -0.73 -1.05 -0.72 -0.81 -0.77 -0.90

mean -0.84 -0.64 -0.69 -0.60 -0.81 -0.64 -0.64 -0.66 -0.69

Table 3: Results for the mean of the di¤erence between the number of points contents in
the ® HDI and the nominal value ® multiplied by 100

100 times, and the frequency in which the true values are included in the 85%; 90%; 95%;
97:5% and 99% highest predictive density interval (HPDI) obtained by the eight methods
considered is recorded. The HPDI have been selected for each method by (i) Bayesian
Model Averaging (BMA) and (ii) by Selecting the Best Model (SBM).

Let f (®; i; j) be the relative frequency in which the true value is included in the
HPDI (®; i; j) interval, with ® = (0:85; 0:90; 0:95; 0:975; 0:99) ; i = CDM; IBF;BIC; FBF
and j = I;NI: Let

d (®; i; j) = (f (®; i; j)¡ ®) 100

be the percentage deviation between the observed interval coverage and the theoretical
one. Table 3 presents the values of d (®; i; j) :

We can observe that all the values are negative, which shows that all the methods
underestimate the length of the true predictive interval, that is, they underestimate the
uncertainty involved in forecasting. Prediction intervals generated by Bayesian model
averaging have almost always better coverage than those generated by the best selected
model. The di¤erence can be quite important when the uncertainty is relatively large,
as happens with M6; in which the percent deviation with BMA is, as an average over
the eight methods, half of the deviation obtained by the best model approach. Note
that BMA intervals are larger than those by SMB but this property does not imply than
they have better coverage. With respect to the methods, we obtain better results for the
uniform prior for the model in all the methods except for FBF, which obtains very similar
results for both priors for the models.
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order Model by = bsR bsR(4)
0 12:54 2:212 1:767
1 16:05¡ 0:158

(¡5:16)
x 1:420 1:012

2 18:67¡ 0:437
(¡3:37)

x+ 0:00587
(2:20)

x2 1:282 0:8410

3 17:98¡ 0:312
(¡0:81)

x¡ 0:00027
(¡0:015)

x2 + 0:000087
(0:35)

x3 1:319 0:8704

4 14:43 + 0:606
(¡0:55)

x¡ 0:0073
(¡0:88)

x2 + 0:0023
(0:92)

x3 ¡ 0:000023
(¡0:90)

x4 1:328 0:9031

Table 4: Di¤erent polynomial models …tted to the protein content data. The third column
shows the standard deviations of the residuals and the fourth column bsR(4) is the standard
deviation when point 4 is deleted.
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Figure 6: Graph of the Protein data

5 Examples

5.1 Protein Content

The data on wheat yield and protein content are taken from Snedecor and Cochran (1989,
p. 399). This set of data has n = 19; and is presented graphically in Figure 5. The authors
use this data to …t a quadratic model to explain the protein content given the yield. The
…tted quadratic model is given in Table 4 together with other …tted models. The t value
for the second order coe¢cient in the quadratic model is 2.20 with a p value of 0.043,
that is just signi…cant. The cubic model does not provide any improvement. As the data
show, point 4 can be regarded as being “spurious”, explaining the fact that this data
point is outlying. Table 4 shows the residual standard deviation for the di¤erent models
…tted to both the complete data and the data set when observation 4 is deleted.

Now we compute the posterior probabilities for each order using the four procedures
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d j CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI
1 0 0.0101 0.0008 0.0376 0.0029 0.0074 0.0006 0.0336 0.0026

1 0.9899 0.9992 0.9624 0.9971 0.9926 0.9994 0.9664 0.9974
2 0 0.0856 0.0066 0.0352 0.0025 0.0061 0.0001 0.0309 0.0011

1 0.4346 0.0745 0.9555 0.8833 0.8195 0.2606 0.8696 0.3956
2 0.4798 0.9188 0.0092 0.1142 0.1744 0.7393 0.0995 0.6034

3 0 0.3265 0.0265 0.0335 0.0013 0.0061 0.0001 0.0371 0.0009
1 0.5410 0.1047 0.8991 0.4877 0.8169 0.2203 0.8300 0.2790
2 0.0841 0.1206 0.0671 0.4945 0.1738 0.6249 0.1307 0.5856
3 0.0484 0.7482 0.0002 0.0113 0.0032 0.1547 0.0023 0.1345

4 0 0.5332 0.0395 0.0374 0.0020 0.0061 0.0001 0.0490 0.0010
1 0.4430 0.1376 0.9529 0.8512 0.8168 0.2077 0.8057 0.2242
2 0.0166 0.0287 0.0093 0.1105 0.1738 0.5893 0.1415 0.5250
3 0.0021 0.0269 0.0001 0.0210 0.0032 0.1459 0.0038 0.1886
4 0.0051 0.7673 0.0000 0.0106 0.0001 0.0569 0.0001 0.0612

Table 5: Posterior probability of the jth order model for the Protein data.

presented in Section 3. The number of training samples is 1000 and the value for the
parameter of the informative prior is q = 0:15: The entries of Table 5 give these posterior
probabilities for the jth degree using di¤erent values of d. When the prior that penalizes
the degree of the polynomial is chosen, the linear model is always selected as the best
one by IBF, BIC approximations and FBF. With the non informative prior BIC and FBF
always choose the quadratic models for d ¸ 3; whereas IBF tends to choose the …srt
degree model and the behaviour of CDM is towards the highest order.

Table 6 shows the posterior probability of the jth order model when the data point 4
is deleted. For the four methods with prior (8), the highest posterior probability is for
the linear model (except for the constant dimension method with d = 2). However, when
using the uniform prior all methods except the CDM choose the quadratic model and the
CDM as before choose the highest possible degree. We conclude from this example that
an isolated outlier may have a signi…cant impact in the model selection process specialy
with non informative prior. The stronger structure implied by the informative prior makes
the result much more robust in this case as can be seen by comparing the probabilities in
Tables 5 and 6.

5.2 The Voltage data.

Montgomery and Peck (1992, p. 212) presents 41 observations on the battery voltage
drop in a guided missile motor over time. The scatter plot of both variables is given in
Figure 7. They …tted these data by a spline with four knots. An alternative model for
these data could be a polynomial regression. Montgomery and Peck state that the cubic
polynomial regression shows a pattern in the residuals. We have checked that this pattern
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d j CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI
1 0 0.0022 0.0002 0.0188 0.0014 0.0014 0.0001 0.0094 0.0007

1 0.9978 0.9998 0.9812 0.9986 0.9986 0.9999 0.9906 0.9993
2 0 0.0086 0.0001 0.0098 0.0003 0.0008 0.0000 0.0080 0.0001

1 0.2682 0.0349 0.9348 0.5620 0.5301 0.0781 0.7394 0.1800
2 0.7232 0.9650 0.0549 0.4377 0.4691 0.9219 0.2526 0.8199

3 0 0.1187 0.0016 0.0092 0.0002 0.0008 0.0000 0.0106 0.0001
1 0.5473 0.0582 0.8158 0.2536 0.5257 0.0641 0.6876 0.1241
2 0.2398 0.1887 0.1746 0.7336 0.4653 0.7570 0.2969 0.7143
3 0.0942 0.7516 0.0003 0.0108 0.0082 0.1789 0.0050 0.1614

4 0 0.3379 0.0105 0.0084 0.0002 0.0008 0.0000 0.0159 0.0002
1 0.5697 0.0764 0.7977 0.2347 0.5256 0.0615 0.6767 0.1054
2 0.0762 0.0844 0.1937 0.7577 0.4652 0.7263 0.2993 0.6217
3 0.0070 0.0588 0.0001 0.0071 0.0082 0.1716 0.0080 0.2207
4 0.0092 0.7700 0.0000 0.0002 0.0001 0.0405 0.0001 0.0520

Table 6: Posterior probability of the jth order model for the Protein data when the point
4 is deleted

order 0 1 2 3 4 5 6
residual std 2.563 2.345 1.076 0.9335 0.2576 0.2609 0.2640

Table 7: Residual standard deviation for the Voltage data for di¤erent polynomial degrees.

disappears when …tting a polynomial of fourth degree, as shown in Figure 8. Table 7 gives
the residual variance for several orders and it can be seen that the fourth order model
seems to …t the data quite well.

As in the previous example, in Table 8 we present the results for values of the degree
from two to six with penalization parameter q = 0:15. All methods choose the model of
degree 4 (or the highest degree when the maximum degree d is less than four) except for
the method with CDM which always chooses the highest possible degree. This example is
interesting becuase it shows a good agreement of the three methods IBF, BIC and FBF in
chosing a high degree polynomial even in the case in which a prior penalyzing the degree
of the polynomial is selected.

6 Concluding Remarks

In this paper we have carried out a comparative study for four methods to estimate the
degree of a polynomial model and to obtain HDI for prediction. The four methods are
compared with two di¤erent priors. The …rst one penalizes the degree of the polynomial
and the second one is uniform over the space of the model.

We conclude that the three methods, IBF, FBF and BIC perform better than the fourth
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Figure 8: Residuals for di¤erent degrees of the polynomial model in the Voltage data.
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d j CDMI CDMNI IBFI IBFNI BICI BICNI FBFI FBFNI
2 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1964 0.0476 0.0965 0.0079 0.1256 0.0107 0.2674 0.0266
3 0.8036 0.9524 0.9035 0.9921 0.8744 0.9893 0.7326 0.9734

4 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9067 0.4548 1.0000 0.9998 0.9877 0.8571 0.9892 0.8730
5 0.0933 0.5452 0.0000 0.0002 0.0123 0.1429 0.0108 0.1270

6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.8953 0.3282 1.0000 0.9998 0.9875 0.8364 0.9830 0.7918
5 0.0882 0.2136 0.0000 0.0002 0.0123 0.1394 0.0168 0.1807
6 0.0165 0.4582 0.0000 0.0000 0.0002 0.0242 0.0002 0.0275

Table 8: Posterior probability of the jth order model for the Voltage data.
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one, CD, for selecting the correct degree of the polynomial. Regarding the two priors used,
broadly speaking the uniform seems to work better, although the informative prior seems
to be more robust to outlier e¤ects.

For prediction purposes, the CD and the IBF seems to provide better coverage than the
more parsimonous mehods BIC and FBF. Whaterver method is used prediction intervals
computed by Bayesian Model Averaging have a highest precision than those corresponding
to the best model. These late intervals are underestimated, and the BMA prediction
corrects somehow this e¤ect.
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