4,610 research outputs found

    Approximating the Real Structured Stability Radius with Frobenius Norm Bounded Perturbations

    Get PDF
    We propose a fast method to approximate the real stability radius of a linear dynamical system with output feedback, where the perturbations are restricted to be real valued and bounded with respect to the Frobenius norm. Our work builds on a number of scalable algorithms that have been proposed in recent years, ranging from methods that approximate the complex or real pseudospectral abscissa and radius of large sparse matrices (and generalizations of these methods for pseudospectra to spectral value sets) to algorithms for approximating the complex stability radius (the reciprocal of the H∞H_\infty norm). Although our algorithm is guaranteed to find only upper bounds to the real stability radius, it seems quite effective in practice. As far as we know, this is the first algorithm that addresses the Frobenius-norm version of this problem. Because the cost mainly consists of computing the eigenvalue with maximal real part for continuous-time systems (or modulus for discrete-time systems) of a sequence of matrices, our algorithm remains very efficient for large-scale systems provided that the system matrices are sparse

    Jet propulsion without inertia

    Full text link
    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate, and limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria

    Coping with negative stereotypes toward older workers: Organizational and work-related outcomes

    Get PDF
    The current study aims to test a moderated-mediation model in which occupational selfefficacy determines the indirect effect of negative stereotypes about older workers in the organization both on psychological engagement in the work domain and on attitudes toward development opportunities through identification with the company. The survey involved 1,501 Italian subjects aged over 50 who were employed by a major large-scale retailer. Consistently with the Social Identity Theory and the Social Exchange Theory, results showed that the perception of negative stereotypes about older workers in the organization is associated with low identification with the company and, subsequently, with poor psychological engagement in the work domain and with attitudes indicating very little interest in development opportunities. In addition, this association was found to be stronger in older workers with higher and medium levels of occupational selfefficacy. These findings suggest that organizations should discourage the dissemination of negative stereotypes about older workers in the workplace because they may lead to older workers' disengagement from the work domain and their loss of interest in development opportunities

    Position-sensorless control of permanent-magnet-assisted synchronous reluctance motor

    Get PDF
    The sensorless control of permanent-magnet-assisted synchronous reluctance (PMASR) motors is investigated, in order to conjugate the advantages of the sensorless control with full exploitation of the allowed operating area, for a given inverter. An additional pulsating flux is injected in the d-axis direction at low and zero speed, while it is dropped out, at large speed, to save voltage and additional loss. A flux-observer-based control scheme is used, which includes an accurate knowledge of the motor magnetic behavior. This leads, in general, to good robustness against load variations, by counteracting the magnetic cross saturation effect. Moreover, it allows an easy and effective correspondence between the wanted torque and flux and the set values of the chosen control variables, that is d-axis flux and q-axis current. Experimental verification of the proposed method is given, both steady-state and dynamic performance are outlined. A prototype PMASR motor will be used to this aim, as part of a purposely assembled prototype drive, for light traction application (electric scooter
    • …
    corecore