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Position-Sensorless Control of
Permanent-Magnet-Assisted
Synchronous Reluctance Motor

Paolo Guglielmi, Michele Pastorelli, Gianmario Pellegrino, and Alfredo Vagati, Fellow, IEEE

Abstract—The sensorless control of permanent-magnet-assisted
synchronous reluctance (PMASR) motors is investigated, in order
to conjugate the advantages of the sensorless control with full ex-
ploitation of the allowed operating area, for a given inverter. An ad-
ditional pulsating flux is injected in the d-axis direction at low and
zero speed, while it is dropped out, at large speed, to save voltage
and additional loss. A flux-observer-based control scheme is used,
which includes an accurate knowledge of the motor magnetic be-
havior. This leads, in general, to good robustness against load varia-
tions, by counteracting the magnetic cross saturation effect. More-
over, it allows an easy and effective correspondence between the
wanted torque and flux and the set values of the chosen control
variables, that is d-axis flux and g-axis current. Experimental ver-
ification of the proposed method is given, both steady-state and dy-
namic performance are outlined. A prototype PMASR motor will
be used to this aim, as part of a purposely assembled prototype
drive, for light traction application (electric scooter).

Index Terms—Permanent-magnet-assisted synchronous reluc-
tance (PMASR) motor, sensorless control.

1. INTRODUCTION

N THE FIELD of controlled drives, adoption of motors

of the synchronous type is continuously increasing. This
is related to many reasons, such as the better efficiency, the
“cold rotor” prerogative, the better torque-to-inertia values, etc.
Typically, permanent-magnet (PM) excited motors are used,
while the surface-mounted (isotropic) rotor represents the most
common design choice. However, for the applications where
a large constant-power speed range is required (e.g., spindle
drives, traction drives, etc.), the surface-mounted rotor does
not represent a good choice. In fact, a tradeoff has to be found,
between the rated torque performance and the flux-weakening
capability [10]. An appropriate solution, in this case, would be
a suitably designed interior PM (IPM) motor.

This topic has received adequate attention in the literature
since the 1980s [1], [2]. However, the former IPM designs were
mainly PM machines, with a minor contribution from the reluc-
tance torque. On the contrary, [4], [5], and [7] have shown that
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the best design choice for flux-weakening performance leads to
a machine with good saliency, thus minimizing the PM. con-
tent and the consequent need for large demagnetizing currents.
In this case, the IPM machine could be more properly called
a PM-assisted synchronous reluctance (PMASR) machine. The
work in [4] must be mentioned, in particular, where a nice gen-
eralization of the problem is presented, introducing the per-unit
“saliency versus magnet” plane and pointing out all the pos-
sible types of machine designs. Among them, the ones leading
to a PMASR machine are shown to be preferable, since they are
suited to wide constant-power speed ranges.

On the other hand, a machine with a good saliency is also de-
sirable from another point of view, that is, its suitability to sen-
sorless control. The removal of any shaft transducer is desired
in a very broad class of practical applications, for well-known
reasons including lower cost and reduced motor size. More-
over, in the last few years the search for position-sensorless
position control has emerged, thus involving zero-speed opera-
tion at a predetermined rotor position. The possible application
field is very wide, from many kinds of position control to those
speed controls where extreme speed accuracy is wanted. As a
consequence, a shift of interest is justified from induction mo-
tors to synchronous ones and, among them, to those showing
a good anisotropic behavior, i.e., synchronous reluctance and
PMASR machines. In fact, a good saliency always allows, at
low speed, the rotor position estimation, independently of the
chosen method of excitation (e.g., injection of high-frequency
additional fields, various types of modified pulsewidth-modu-
lation (PWM) techniques, etc.). Because of the above reasons,
sensorless control of IPM machines is becoming a much-fre-
quented topic, in the literature. In this paper, the control pecu-
liarities of PMASR machines are pointed out, giving evidence
to the allowed operating area (AOA) in the state plane. Then, a
sensorless control scheme is proposed, which was shown to be
very effective for synchronous reluctance motors [8]. Lastly, ex-
perimental results are given, as obtained from a prototype drive,
adopting a prototype PMASR motor.

II. MACHINE PERFORMANCE AND CONTROL LIMITS

Let us start from consideration of the measured flux—cur-
rent relationship (Fig. 1) of the PMASR machine adopted in
the experiments, that is, a motor for scooter application having
20 N-m as rated torque (Fig. 2). The machine stator diameter
is 150 mm and its core length is 142 mm, the rotor inertia is
4.5-1072 kg - m2.

0093-9994/04$20.00 © 2004 IEEE
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Fig. 2. Rotor and stator layout.

The Fig. 1 characteristics refer to a (d, ¢) frame synchronous
to the rotor, with the d axis aligned to the direction of max-
imum permeance. This looks unusual, when dealing with PM
motors. However, since we deal with a PMASR motor, the main
flux component lies on the d axis, because of the fairly good
anisotropic behavior (the unsaturated anisotropy ratio is larger
than ten). This was obtained by a four-barrier-per-pole rotor
structure (Fig. 2), filled with NdFeB magnets. From Fig. 1 char-
acteristics we can observe the following.

* Both d- and g-axes behaviors are nonlinear, in principle: a
cross-saturation effect is evident, also.

* The differential anisotropy is quite good, for the usual
working points: however, it tends to disappear, when the d
axis is put into deep saturation.

* The effect of cross- saturation on the ¢ component of flux
is comparable to that due to the thermal drift of the mag-
nets.

A simple linearity between flux and current cannot be
assumed. However, a simplified model could be adopted, as
suggested in [5]. A linear relationship was assumed there for
the ¢ axis (L, = const), while the d axis was described by the
apparent L,(i4) and differential Lg4(74) inductances, which
are, of course, related to each other. The cross saturation was
neglected. The result there obtained was a general (parametric)
definition of the allowed operating area (AOA) during flux
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=
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Fig. 3.
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Fig. 4. AOA of current vector (positive torque).

weakening, once voltage and current limitations are provided
by the inverter.

On the other hand, from motor characteristics like those in
Fig. 1 the AOA can be directly obtained, for control purposes.
With reference to the (d, ¢) frame previously introduced, cur-
rent and flux vectors can be defined by their d, ¢ component or,
alternatively, by their modules z, A and their arguments -y, ¢, re-
spectively, as summarized in Fig. 3, where the flux A,, due to
PMs is also evidenced.

The AOA for the current vector (positive torque) is shown in
Fig. 4 (shaded). In general, three different curves can be rec-
ognized. First a), the k7 pax locus (max N-m/A at fixed cur-
rent amplitude), which represents a common control choice in
the constant-torque region. Then, the current limitation during
flux weakening b) moves the current vector toward the ¢ axis,
until the locus ¢) of maximum torque with constrained voltage
is eventually reached. Along this locus the current vector is def-
initely reduced, up to the point at which the total flux would be
zero, thus corresponding to infinite speed. The AOA for nega-
tive torque is symmetrical, with respect to the ¢ axis.
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Fig. 5. AOA of flux vector (positive torque).

In synthesis, the three zones can be defined as shown by (1),
V, and I being the maximum allowed phase voltage and current
amplitudes.

Fig. 5 shows the AOA in the flux plane (Aq, Ay), where the
three zones a), b), and c) are still pointed out

zone a) : g—r‘g =0
zoneb): i=1I,, v="V; (1)
zone c); %—:g =0, v=V,.

If LyIs = Ay, the limit situation occurs for which the max-
imum current I can flow at infinite speed (at unity power factor)
[2]-[5], [9]. In this case the c) zone disappears.

As seen, the allowed drive working points can be described by
any combination of current or flux components. However, a dif-
ferent performance is obtained depending on the two variables
to be controlled directly (control variables). The most common
choice is (74, i), since currents are measured quantities. How-
ever, Fig. 4 points out the large sensitivity of this choice to the
errors on the measurement/estimation of the synchronous frame
position at high speed, when i, gets very low values. On the
other hand, the opposite choice (Aq, A4) would be much sensi-
tive to the uncertainty of the g-axis model. A best choice seems
to be (Ag, 74), which looks the most robust, at least at load, when
Aq and ¢, represent the largest components. However, an in-
creased sensitivity to errors would occur at no load, when the
Aqta term is important, in the torque equation: this can lead to
loss of control in case of sensorless control, as mentioned in the
following.

A completely different choice of control variables was made
in [3], [6], where a flux-oriented control frame was chosen for a
control of the sensored type. In this way, a good robustness was
obtained at the expense of lower dynamics.

The block scheme of the (Mg, 74)-based machine control
structure is shown in Fig. 6. A(¥)) represents the rotation
matrix. The motor currents are measured, while the motor
voltages are obtained from dc bus measurement and knowledge
of the inverter states.

The key role is played by the observer block, which must pro-
vide the observed d-flux component for flux feedback, together
with the rotor observed position (and speed). The additional,
high-frequency flux signal A\y; is also shown, which is needed,
at low and zero motor speed, for sensorless operation. The set
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Fig. 6. Machine control structure.

flux A% and current 7}; values can be obtained from the set torque
and flux amplitude (or speed), as shown in the following.

III. SENSORLESS OPERATION

At high speed (frequency) the flux linkage can be easily es-
timated by voltage integration, thus allowing sensorless opera-
tion. However, when torque control at zero speed is required,
the flux estimation comes from knowledge of the flux—current
relationship (magnetic model, Fig. 1) and the rotor position is
obtained by tracking the rotor saliency. Let us observe that all
the commonly adopted saliency-based methods refer to the “dif-
ferential saliency” behavior of the machine. For this reason, syn-
chronous reluctance and PMASR motors behave in a similar
way, since they are both described by similar differential in-
ductances. For equivalent rotor designs, magnet embedding will
even improve the anisotropy, at high load. For the above reasons,
the method already proposed by the authors [8] for synchronous
reluctance motors is here adopted for a PMASR motor.

A peculiarity of this method is to be robust against cross-satu-
ration. It has been shown in [8] that cross saturation introduces a
displacement of the backward component due to saliency, thus
leading to a relevant error in the position estimate. As an ex-
ample, the (2) can be written, relating the differential phasors
dAqq and 834, to each other (674, is the complex conjugate): /4,
lq, lag are the differential inductances (0Aq/0iq), (0Ng/01q),
(OAa/0iq) = (OAy/Diq), respectively,

ld—|-lq ld—lq

SAag =

Oiaq + < + jldq> bigy- )

As can be seen, the backward coefficient is complex, due to
the /44 term. Equation (2) refers to current excitation and flux
detection; however, the same effect arises when flux (voltage) is
injected and current is detected, which is more common in the
literature.

In the proposed method the above-cited problem is over-
come, because a flux-observer structure is used and flux signals
are both injected and detected. The flux—current relationship
(Fig. 1) is included in the flux-observer structure shown in
Fig. 7, represented by the nonlinear block L. As stated, A(1) is
the rotation matrix, from stationary («, (3) to synchronous (d, ¢)
frame. The gain matrix is reduced to a scalar, g, for simplicity.
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Fig. 7. Flux observer structure.

The dynamic behavior of this flux observer is pointed out
by (3), in terms of Laplace transfer functions. As can be seen,
the voltage integral A\,g = (vo3 — Ring)/s is high-pass fil-
tered, while the flux estimate from the magnetic model /N\a g is
low-pass filtered. As a consequence, they both work at the best,
since voltage integration fails at low frequency while the mag-
netic behavior is affected, at high frequency, by core losses

Q 5 Vag — Riap L9

Aag = Aag- 3
p s+g S s+ g p )

The choice of g (cros-over pulsation) is a matter of tradeoff
between these two types of error, taking into account that the
motor voltage is estimated from dc bus voltage and inverter
states.

The scheme of Fig. 7 requires knowledge of the rotor angle
). However, at high frequency, when the estimated flux Az is
mainly dependent on voltage integration, the +J angle should be
self-supplied to the observer, coming from vector and dot prod-
ucts between the observed flux on the stationary frame A, 5 and
the estimated one on the synchronous frame A, 3. In practice, (4)
can be used. They are also effective during fast flux transients,
since in this case the electromotive force (EMF) signal is large
sind = M cost = M.

2 2 “4)

Of course, at steady state and low speed, the observed flux
tends to the one estimated from the block L and, consequently,
the angle ¥ estimated by (4) becomes meaningless. This is
clearly shown by (5), which is easily obtained from (3). The
flux A, g represents the true one, as ideally obtained from EMF
integration. At steady state, the difference between estimated
and observed fluxes vanishes; thus, (4) can be satisfied by any
value of J. As a consequence, since a controlled behavior is
wanted at low and zero speed, a saliency-tracking loop has to
be added, to the flux observer scheme of Fig. 7. The proposed
solution is shown in Fig. 8

S

AXos = Aap — Aap = T

Aoz =Aas). )

A high-frequency sinusoidal signal \4; is injected, in the es-
timated d-axis direction, in addition to the motor reference flux.
As a misalignment indicator, the ¢ component of the flux error
A\ shown in Fig. 7 is used. Thus, the errors due to cross satura-
tion, as discussed above, are here inherently compensated by the
inclusion of the magnetic model L in the Fig. 7 observer. Note
that the high-frequency ¢ components of both the true (A,) and
the estimated (/N\q) fluxes vanish, for correct orientation. Their

g @)

A
Demod. L, VA A 1o

w
BP. —=PI — —
Filter L s
A A Switch
0 @ Block
Fig. 8. Suggested sensorless observer.
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Fig. 9. Constant-torque and constant-flux loci in the (A4, 74) plane.

difference (A),) has been used as representative of the position
error, because it is inherently high-pass filtered, owing to (5).

In the Fig. 8 scheme, the high-frequency A\, error, once
demodulated, is fed to the proportional-integral (PI) regulator
through a weighting function which has unitary value at low
speed and zero value at high speed.

The output of the PIregulator is integrated and then compared
with the result of (4). The difference between 9 and J is also
used as error in the tracking loop, combined with the previous
one, depending on the speed. At high speed, when the EMF is
a reliable signal and the flux injection is dropped out, the result
of (4) is directly sent to the PI regulator and then integrated.
The weighting functions of the “switch” block move linearly
from one to zero and vice-versa. The shapes of the weighting
functions are related to the value of the flux observer gain and
to the point when the flux injection is dropped out. The choice of
the weighting functions is definitely made in order to reduce the
resulting noise content. The signal w is used as speed feedback
for the speed loop.

IV. TORQUE AND SPEED CONTROL

As stated above, the control variables (A4, 4,) must be set
from the requested torque 7 and flux amplitude \*, which in
turn depends on the speed value. In order to fix the reference
Aq and ¢4 values a lookup table with reference torque and speed
as input quantities can be used. In Fig. 9 the usual a), b), and
¢) loci are shown in the Ag, 74 plane, together with the constant
torque and constant flux loci. An assigned torque value can be
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Fig. 10. General control scheme.

obtained by several couples of (Ag, i¢) values, that implies dif-
ferent flux values. If a constant torque at variable speed is re-
quired the motor working point can move along the constant
torque locus in order to reach the limit of the AOA. Then the
AOA limit is tracked if the flux is furtherly decreased. The gen-
eral control scheme is summarized in Fig. 10.

V. EXPERIMENTAL RESULTS

Based on the previously described control scheme, a proto-
type sensorless drive has been assembled and tested.

An insulated-gate-bipolar-transistor (IGBT)-based 535-V
supplied inverter was used, PWM operated at a 10-kHz fre-
quency. The adopted digital signal processor (DSP) was an
ADSP-21 020 (input clock 33 MHz) installed on the original
evaluation board. The analog inputs (motor currents and dc-bus
voltage) were synchronously sampled at PWM frequency (10
kHz), by 12-bit A/D converters. The currents were transduced
by a Hall-effect CT, while the dc voltage was acquired by a
differential amplifier. The actual motor position and speed
are measured by an incremental encoder. The described angle
detection scheme bases its performance on the differential
saliencies. However, since permanent magnets are present in
the machine, at the startup the system has to detect the magnet
polarity, in order to set the correct initial value of the angle.
In order to cope with this problem a start up procedure has
been adopted, based on the value of the apparent inductance.
Before enabling current and flux control loops, the motor is
supplied with a balanced three phase system (100 V peak)
at 300-Hz frequency and the motor currents are detected.
When the current is aligned with the q axis the motor shows
a low apparent inductance, that leads to a peak in the current
amplitude. However peaks of different amplitude occur when ¢
or —q directions are excited as shown in Fig. 11.

This allows an easy detection of the magnet polarity, since the
highest peak occurs when the current is in the same direction of
the PM flux (—gq).

In order to prove the effectiveness of the proposed method
the PMASR motor has been driven by an auxiliary motor, while
the startup procedure was operating. The sine of the detected
angle (sin ) is shown in Fig. 12 together with the sine of the
actual angle (sin ). The performance of Fig. 12 looks satisfac-
tory. It can be noted that the detected angle shows a large quan-
tization noise: this represents an acceptable trade off between
the time needed to initialize the control and the accuracy, since
this startup procedure has the only target to give an initial angle
value to the sensorless control.

The behavior of the complete sensorless control scheme is
shown in the following experimental results, for which a simple
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Fig. 12. Performance of the startup detection method. Time base: 500 ms/div.

reference generation law has been adopted. Both A" and 7,*
are set equal to zero when the required torque is zero, while
at the maximum torque of 25-N-m flux and current references
have been fixed on the maximum N-m/A locus. At intermediate
torque values both A;" and i, are linear functions of the torque.

This flux-weakening profile does not represent the best
choice since a better solution would be to follow the constant
torque locus as long as possible inside the AOA (Fig. 9).
However, this control strategy, which is optimal for a sensored
control, has lead to instability in the sensorless case.

In the adopted flux weakening profile the torque is reduced
starting from 350 rad/s, which is immediately after the border
of the flux injection region.

InFig. 13, acomplete startup transient is shown, from 0 to 100
rad/s. The motor has been purposely set in a large error position
with respect to the initial one in the DSP, and than let free to
run. The fast convergence of the error and the consequent startup
delay (10 ms) can be appreciated. After this a step transient is
imposed and full torque is given. It can be seen that the angle
accuracy is good all over the speed transient.

In Figs. 14 and 15, two different step transients from —500
to 4500 rad/s and from —800 to +800 rad/s are shown. Both
measured and estimated speed are presented showing a very
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Fig. 14. 4500 rad/s step transient. Time base: 100 ms/div.

good agreement between them. The controlled flux and the ref-
erence ¢, current are also given in order to show the adopted
reference generation scheme and the performance of the con-
trol speed loop. Both flux and current are weakened beyond the
base speed to avoid stability problems, as stated.

The maximum acceleration is 3000 rad/ 52, with a total inertia
(motor + load) of 6.5 - 1073 kg - m2.

In Fig. 16 a stop and go from 9000 r/min down to zero and
than up to 9000 r/min is given, showing the performance with
positive and negative torque requirements, at zero speed and
very high speed as well.

Triangular and sinusoidal speed references are presented in
Figs. 17 and 18 showing the performance of the speed loop and
the reasonable accuracy of the method, since the estimated angle
error is fairly limited.

Finally, a load step response is presented in Fig. 19, where
the motor has been connected to an auxiliary torque controlled
motor, and a near-to-rated torque is applied. The estimated and
real speeds show good accordance. The recovery time is consis-
tent with the actual speed bandwidth. The observed d flux and
q motor current are also reported. They are both affected by the
high-frequency injection signal Ay (800 Hz, 0.02 Vs peak).

| :'/\ ]
T R0 VAT A
) v
p“""d —
1 ™
& [500 (rad/s)/div] // 5o
";j/(u'[566(&5&/5)7&5?]”'_&,:0
e
_4—/"’-“’ -
I i;;l[lslA/div]““*m_i: -0

Fig. 15. 4800 rad/s step transient. Time base: 200 ms/div.
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Fig. 16. 4950 rad/s step transient. Time base: 1 s/div.
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Fig. 17. Triangular speed response (0.25 Hz, £10 rad/s). Time base: 1 s/div.

VI. CONCLUSION

A sensorless control for a PMASR motor has been presented.
The obtained performance shows a quite large flux-weakening
range together with fairly good dynamics and accuracy. More-
over, the control is sufficiently robust for a large range of load
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and speed while a good zero-speed behavior is obtained. A weak
point still regards the no-load performance, depending on the
quite small value of the PM flux; further improvements are pos-
sible on this point. Moreover, some work is still needed for better
exploitation of the AOA during flux weakening.

(1]

(2]

(3]

(4]

[5

—_

(6]

REFERENCES

T. M. Jahns, “Flux-weakening regime operation of an interior perma-
nent magnet synchronous motor drive,” IEEE Trans. Ind. Applicat., vol.
IA-23, pp. 681-689, July/Aug. 1987.

R.F. Schiferl and T. A. Lipo, “Power capability of salient pole permanent
magnet synchronous motors in variable speed drive applications,” IEEE
Trans. Ind. Applicat., vol. 26, pp. 115-123, Jan.—Feb. 1990.

M. Bilewski, L. Giordano, A. Fratta, A. Vagati, and F. Villata, “Control
of high performance interior permanent magnet synchronous drives,”
IEEE Trans. Ind. Applicat., vol. 29, pp. 328-337, Mar./Apr. 1993.
W.L.Soong and T. J. E. Miller, “Field-weakening performance of brush-
less synchronous AC motor drives,” in Proc. IEE—Elect. Power Ap-
plicat., vol. 141, Nov. 1994, pp. 331-340.

A. Fratta, A. Vagati, and F Villata, “Permanent magnet assisted
synchronous reluctance drives: drive power limits,” in Proc. PCIM’92,
Nuremberg, Germany, Apr. 27-30, 1992, pp. 196-203.

—, “Permanent magnet assisted synchronous reluctance drives: Com-
parative analysis of control requirements,” in Proc. PCIM’92, Nurem-
berg, Germany, Apr. 27-30, 1992, pp. 187-195.

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

621

T. M. Jahns, “Component rating requirements for wide constant power
operation of interior pm synchronous machine drives,” in Conf. Rec.
IEEE-IAS Annu. Meeting, vol. 3, 2000, pp. 1697-1704.

A. Vagati, M. Pastorelli, P. Guglielmi, and E. Capecchi, “Position sen-
sorless control of transverse-laminated synchronous reluctance motors,”
IEEE Trans. Ind. Applicat., vol. 37, pp. 1176-1768, Nov./Dec. 2001.

S. Morimoto, Y. Takeda, T. Hirasa, and K. Taniguchi, “Expansion of
operating limits for permanent magnet motor by current vector control
considering inverter capacity,” IEEE Trans. Ind. Applicat., vol. 26, pp.
866-871, Sept./Oct. 1990.

B. J. Chalmers, L. Musala, and D. F. Gosden, “Performance characteris-
tics of synchronous motor drives with surface magnets and field weak-
ening,” in Conf. Rec. IEEE-IAS Annu. Meeting, San Diego, CA, 1996,
pp. 511-517.

J.-1.Jung-Ik Ha, K.K. Ide, T. Sawa, and S.-K.Seung-Ki Sul, “Sensorless
position control and initial position estimation of an interior permanent
magnet motor,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 4,2001, pp.
2607-2613.

M. Schroedl, “Sensorless control of AC machine at low speed and stand-
still based on the ‘INFORM’ method,” in Conf. Rec. IEEE-IAS Annu.
Meeting, 1996, pp. 270-277.

S. Ogasawara and H. Akagi, “Implementation and position control per-
formance of a position-sensorless IPM motor drive system based on
magnetic saliency,” IEEE Trans. Ind. Applicat., vol. 34, pp. 806-812,
July/Aug. 1998.

P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity
estimation in induction and salient AC machines,” IEEE Trans. Ind. Ap-
plicat., vol. 31, pp. 240-247, Mar./Apr. 1995.

Paolo Guglielmi was born in Imperia, Italy, in
1970. He received the M.Sc. degree in electronic
engineering and the Ph.D. degree in electrical
engineering from the Politecnico di Torino, Turin,
Italy, in 1996 and 2001, respectively.

In 1997, he joined the Department of Electrical En-
gineering, Politecnico di Torino, where he became a
Researcher in 2002. His fields of interest are power
electronics, high-performance servo drives, and com-
puter-aided design of electrical machines. He has au-
thored several papers published in technical journals

and conference proceedings.
Dr. Guglielmi is a Registered Professional Engineer in Italy.

Michele Pastorelli was born in Novara, Italy, in
1962. He received the Laurea and Ph.D. degrees in
electrical engineering from the Politecnico di Torino,
Turin, Italy, in 1987 and 1992, respectively.

In 1988, he joined the Department of Electrical
Engineering, Politecnico di Torino, where he is cur-
rently an Associate Professor. His fields of interest
include power electronics, high-performance servo
drives, and energetic behaviors of electrical ma-
chines. He has authored about 70 papers published
in technical journals and conference proceedings.

Dr. Pastorelli is a Registered Professional Engineer in Italy.

Gianmario Pellegrino was born in Turin, Italy, in
1973. He received the M.Sc. and PhD. degrees in
electrical engineering from the Politecnico di Torino,
Turin, Italy, in 1998 and 2002, respectively.

In 2002, he was a Guest Researcher at Aalborg
University, Denmark, working for Sauer Danfoss.
He is presently a Researcher at the Politecnico di
Torino, working in the fields of power electronics,
high-performance servo drives, and electrical
machines design. He has authored several papers
published in technical journals and conference

proceedings.
Dr. Pellegrino is a Registered Professional Engineer in Italy.



622 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 40, NO. 2, MARCH/APRIL 2004

Alfredo Vagati (M’87-F98) received the Laurea de-
gree in electrical engineering from the Politecnico di
Torino, Turin, Italy, in 1970.

After a few years working in industry with Olivetti,
he joined the Politecnico di Torino in 1975 as Assis-
tant Professor. From 1982 to 1990, he was an Asso-
ciate Professor of Electrical Drives In 1990, he be-
came a Professor of Electrical Machines and Drives
at the University of Cagliari, Italy In 1991, he re-
joined the Politecnico di Torino in the same capacity.
He was Chair of the Electrical Engineering Depart-
ment of the Politecnico di Torino from 1995 to 2003. His scientific activity, in
the field of electrical machines and drives, has particularly concerned high-per-
formance ac drives. He has been involved in several industrial projects, in the
field of ac drives, as both a designer and a scientific reference. The most impor-
tant activity of this kind has concerned design and control of newly developed,
high-performance synchronous reluctance motors. He has led several country-
wide and European research projects, in the field of design and control of syn-
chronous-machine-based drives, for different applications, including home ap-
pliances and the automotive world. He has authored or coauthored more than
80 technical papers.

Prof. Vagati is a permanent member of the Technical Program Committee
of the PCIM International Conference and Exhibition. He is also a member of
the Industrial Drives and Electric Machines Committees of the IEEE Industry
Applications Society.




