54 research outputs found
Temperature dependent photoluminescence of organic semiconductors with varying backbone conformation
We present photoluminescence studies as a function of temperature from a
series of conjugated polymers and a conjugated molecule with distinctly
different backbone conformations. The organic materials investigated here are:
planar methylated ladder type poly para-phenylene, semi-planar polyfluorene,
and non-planar para hexaphenyl. In the longer-chain polymers the
photoluminescence transition energies blue shift with increasing temperatures.
The conjugated molecules, on the other hand, red shift their transition
energies with increasing temperatures. Empirical models that explain the
temperature dependence of the band gap energies in inorganic semiconductors can
be extended to explain the temperature dependence of the transition energies in
conjugated molecules.Comment: 8 pages, 9 figure
The murine male reproductive organ at a glance: Three-dimensional insights and virtual histology using label-free light sheet microcopy
Background:The unique anatomy of the male reproductive organ reflects its complex function from sperm maturation to their storage for months until emission. Since light microscopy in two dimensions (2d) cannot sufficiently demonstrate its complex morphology, a comprehensive visualization is required to identify pathologic alterations in its entire anatomical context.Objectives:Aim of this study was to use three-dimensional (3d) light sheet fluorescence microscopy (LSFM) to visualize entire murine testes in 3d, label-free and at subcellular resolution, and to assign local autofluorescence to testicular and deferent structures.Materials and methods:Murine testes were fixed with four different fixatives and subsequently cleared with benzoic acid/benzyl benzoate. Hereafter, complete murine testes were scanned with LSFM with different fluorescence filter sets and subsequently embedded in paraffin for further conventional planar histology.Results:Autofluorescence signals of the murine reproductive organ allowed the unambiguous identification of the testicular anatomy from the seminiferous tubules to the vas deferens with their specific stratification independent of the used fixative. Blood vessels were visualized from the pampiniform plexus to the small capillaries of single tubules. Moreover, due to the specific intrinsic fluorescence properties of the efferent ducts and the epididymis, luminal caliber, the epithelial stratification and retronuclear cytoplasmic inclusions gave a unique insight into the interface of both morphological structures. Subsequent 2d histology confirmed the identified morphological structures.Discussion:LSFM analysis of the murine reproductive organ allows due to its intrinsic fluorescence a simple, label-free 3d assessment of its entire duct morphology, the epithelial composition, and the associated blood supply in its anatomical relation.Conclusion:LSFM provides the technical basis for comprehensive analyses of pathologically altered murine testes in its entirety by depicting specific autofluorescence. Thereby it facilitates mouse studies of testicular disease or their drug-related alterations in more detail potentially for clinical translation assessing human testicular biopsies.<br
Hydrostatic pressure dependence of the luminescence and Raman frequencies in polyfluorene
DOI: 10.1103/PhysRevB.68.115203 http://link.aps.org/doi/10.1103/PhysRevB.68.115203We present studies of the photoluminescence (PL), absorption, and Raman scattering spectra from poly[2,7-(9,9′-bis(2-ethylhexyl))fluorene] under hydrostatic pressures of 0-100 kbar at room temperature. The well-defined PL and associated vibronics that are observed at atmospheric pressure change dramatically around 20 kbar in the bulk sample and at around 35 kbar for the thin-film sample. Beyond these pressures the PL emission from the backbone is swamped by strong peaks due to aggregates and keto defects in the 2.1-2.6 eV region. The Raman peaks shift to higher energies and exhibit unexpected antiresonance line shapes at higher pressures, indicating a strong electron-phonon interaction.S.G. acknowledges the donors of the American Chemical Society Petroleum Research Fund No. 38193-B7! for partial support of this research. U.S. thanks SONY International Europe, Stuttgart, and the Deutsche Forschungsgemeinschaft (DFG) for financial support
3D virtual histology of murine kidneys-high resolution visualization of pathological alterations by micro computed tomography
The increasing number of patients with end stage chronic kidney disease not only calls for novel therapeutics but also for pioneering research using convincing preclinical disease models and innovative analytical techniques. The aim of this study was to introduce a virtual histology approach using micro computed tomography (mu CT) for the entire murine kidney in order to close the gap between single slice planar histology and a 3D high resolution dataset. An ex vivo staining protocol based on phosphotungstic acid diffusion was adapted to enhance renal soft tissue x-ray attenuation. Subsequent CT scans allowed (i) the detection of the renal cortex, medulla and pelvis in greater detail, (ii) the analysis of morphological alterations, (iii) the quantification of the volume as well as the radio-opacity of these portions and (iv) the quantification of renal fibrotic remodeling based on altered radio-opacity using the unilateral ureteral obstruction model. Thus, virtual histology based on PTA contrast enhanced CT will in future help to refine the outcome of preclinical research on kidney associated murine disease models
Assembly maps with coefficients in topological algebras and the integral K-theoretic Novikov conjecture
We prove that any countable discrete and torsion free subgroup of a general
linear group over an arbitrary field or a similar subgroup of an almost
connected Lie group satisfies the integral algebraic K-theoretic (split)
Novikov conjecture over \cpt and \S, where \cpt denotes the C^*-algebra of
compact operators and \S denotes the algebra of Schatten class operators. We
introduce assembly maps with finite coefficients and under an additional
hypothesis, we prove that such a group also satisfies the algebraic K-theoretic
Novikov conjecture over \bar{\mathbb{Q}} and \mathbb{C} with finite
coefficients. For all torsion free Gromov hyperbolic groups G, we demonstrate
that the canonical algebra homomorphism \cpt[G]\map C^*_r(G)\hat{\otimes}\cpt
induces an isomorphism between their algebraic K-theory groups.Comment: v2 Exposition improved; one lemma and grant acknowledgement added; v3
some terminology changed and details added, Theorems 4.5 and 4.7 in v3 need
an extra hypothesis; v4 abridged version accepted for publication in JHR
Nonlinear spectral calculus and super-expanders
Nonlinear spectral gaps with respect to uniformly convex normed spaces are
shown to satisfy a spectral calculus inequality that establishes their decay
along Cesaro averages. Nonlinear spectral gaps of graphs are also shown to
behave sub-multiplicatively under zigzag products. These results yield a
combinatorial construction of super-expanders, i.e., a sequence of 3-regular
graphs that does not admit a coarse embedding into any uniformly convex normed
space.Comment: Typos fixed based on referee comments. Some of the results of this
paper were announced in arXiv:0910.2041. The corresponding parts of
arXiv:0910.2041 are subsumed by the current pape
Osteopenia Due to Enhanced Cathepsin K Release by BK Channel Ablation in Osteoclasts
BACKGROUND: The process of bone resorption by osteoclasts is regulated by Cathepsin K, the lysosomal collagenase responsible for the degradation of the organic bone matrix during bone remodeling. Recently, Cathepsin K was regarded as a potential target for therapeutic intervention of osteoporosis. However, mechanisms leading to osteopenia, which is much more common in young female population and often appears to be the clinical pre-stage of idiopathic osteoporosis, still remain to be elucidated, and molecular targets need to be identified. METHODOLOGY/PRINCIPAL FINDINGS: We found, that in juvenile bone the large conductance, voltage and Ca(2+)-activated (BK) K(+) channel, which links membrane depolarization and local increases in cytosolic calcium to hyperpolarizing K(+) outward currents, is exclusively expressed in osteoclasts. In juvenile BK-deficient (BK(-/-)) female mice, plasma Cathepsin K levels were elevated two-fold when compared to wild-type littermates. This increase was linked to an osteopenic phenotype with reduced bone mineral density in long bones and enhanced porosity of trabecular meshwork in BK(-/-) vertebrae as demonstrated by high-resolution flat-panel volume computed tomography and micro-CT. However, plasma levels of sRANKL, osteoprotegerin, estrogene, Ca(2+) and triiodthyronine as well as osteoclastogenesis were not altered in BK(-/-) females. CONCLUSION/SIGNIFICANCE: Our findings suggest that the BK channel controls resorptive osteoclast activity by regulating Cathepsin K release. Targeted deletion of BK channel in mice resulted in an osteoclast-autonomous osteopenia, becoming apparent in juvenile females. Thus, the BK(-/-) mouse-line represents a new model for juvenile osteopenia, and revealed the BK channel as putative new target for therapeutic controlling of osteoclast activity
Supramolecularly directed rotary motion in a photoresponsive receptor
Stimuli-controlled motion at the molecular level has fascinated chemists already for several decades. Taking inspiration from the myriad of dynamic and machine-like functions in nature, a number of strategies have been developed to control motion in purely synthetic systems. Unidirectional rotary motion, such as is observed in ATP synthase and other motor proteins, remains highly challenging to achieve. Current artificial molecular motor systems rely on intrinsic asymmetry or a specific sequence of chemical transformations. Here, we present an alternative design in which the rotation is directed by a chiral guest molecule, which is able to bind non-covalently to a light-responsive receptor. It is demonstrated that the rotary direction is governed by the guest chirality and hence, can be selected and changed at will. This feature offers unique control of directional rotation and will prove highly important in the further development of molecular machinery
Musculoskeletal Response to Whole-Body Vibration During Fracture Healing in Intact and Ovariectomized Rats
This study investigated the effect of vibration on bone healing and muscle in intact and ovariectomized rats. Thirty ovariectomized (at 3 months of age) and 30 intact 5-month old female Sprague-Dawley rats underwent bilateral metaphyseal osteotomy of tibia. Five days later, half of the ovariectomized and of the intact rats were exposed to whole-body vertical vibration (90 Hz, 0.5 mm, 4 × g acceleration) for 15 min twice a day during 30 days. The other animals did not undergo vibration. After decapitation of rats, one tibia was used for computed tomographic, biomechanical, and histological analyses; the other was used for gene expression analyses of alkaline phosphatase (Alp), osteocalcin (Oc), tartrate-resistant acid phosphatase 1, and insulinlike growth factor 1. Serum Alp and Oc were measured. Mitochondrial activity, fiber area and distribution, and capillary densities were analyzed in M. gastrocnemius and M. longissimus. We found that vibration had no effect on body weight and food intake, but it improved cortical and callus densities (97 vs. 99%, 72 vs. 81%), trabecular structure (9 vs. 14 trabecular nodes), blood supply (1.7 vs. 2.1 capillaries/fiber), and oxidative metabolism (17 vs. 23 pmol O2/s/mg) in ovariectomized rats. Vibration generally increased muscle fiber size. Tibia biomechanical properties were diminished after vibration. Oc gene expression was higher in vibrated rats. Serum Alp was increased in ovariectomized rats. In ovariectomized rats, vibration resulted in an earlier bridging; in intact rats, callus bridging occurred later after vibration. The chosen vibration regimen (90 Hz, 0.5 mm, 4 × g acceleration, 15 min twice a day) was effective in improving musculoskeletal tissues in ovariectomized rats but was not optimal for fracture healing
Served but unsettled. The Contentious Side of Services for the Homeless
Services for the poor are often ambiguous. Offering help to get by but not necessarily to get out of poverty, they manifest a distance between mainstream society and recipients. For those who live in severe poverty, the distance often comes with a particular place: the shelter. Shelters are places of transit and by their very nature contentious, they cannot replace a home. They often become risk factors themselves that prevent their users from settling and stabilizing; experiences of stigmatization, shame or denial are common. This paper opens by offering a concept of ‘welfare space’, and then focuses on the landscape of homeless services and shelters in Europe. Drawing on current ethnographic studies and our own research in Hamburg, Vienna and Milan, we illustrate how the state of being unsettled plays out in the everyday life of people experiencing homelessness and the role of shelters and social services in it
- …