725 research outputs found

    Left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation reduces the development of long-term muscle pain

    Get PDF
    The left dorsolateral prefrontal cortex (DLPFC) is involved in the experience and modulation of pain, and may be an important node linking pain and cognition. Repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC can reduce chronic and experimental pain. However, whether left DLPFC rTMS can influence the development of chronic pain is unknown. Using repeated intramuscular injection of nerve growth factor to induce the development of sustained muscle pain (lasting weeks), 30 healthy individuals were randomized to receive 5 consecutive daily treatments of active or sham left DLPFC rTMS, starting before the first nerve growth factor injection on day 0. Muscle soreness and pain severity were collected daily for 14 days and disability on every alternate day. Before the first and 1 day after the last rTMS session, anxiety, depression, affect, pain catastrophizing, and cognitive performance on the attention network test were assessed. Left DLPFC rTMS treatment compared with sham was associated with reduced muscle soreness, pain intensity, and painful area (P < 0.05), and a similar trend was observed for disability. These effects were most evident during the days rTMS was applied lasting up to 3 days after intervention. Depression, anxiety, pain catastrophizing, and affect were unchanged. There was a trend toward improved cognitive function with rTMS compared with sham (P = 0.057). These data indicate that repeated left DLPFC rTMS reduces the pain severity in a model of prolonged muscle pain. The findings may have implications for the development of sustained pain in clinical populations

    High frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor cortex function in the transition to sustained muscle pain

    Get PDF
    Based on reciprocal connections between the dorsolateral prefrontal cortex (DLPFC) and basal-ganglia regions associated with sensorimotor cortical excitability, it was hypothesized that repetitive transcranial magnetic stimulation (rTMS) of the left DLPFC would modulate sensorimotor cortical excitability induced by muscle pain. Muscle pain was provoked by injections of nerve growth factor (end of Day-0 and Day-2) into the right extensor carpi radialis brevis (ECRB) muscle in two groups of 15 healthy participants receiving 5 daily sessions (Day-0 to Day-4) of active or sham rTMS. Muscle pain scores and pressure pain thresholds (PPTs) were collected (Day-0, Day-3, Day-5). Assessment of motor cortical excitability using TMS (mapping cortical ECRB muscle representation) and somatosensory evoked potentials (SEPs) from electrical stimulation of the right radial nerve were recorded at Day-0 and Day-5. At Day-0 versus Day-5, the sham compared to active group showed: Higher muscle pain scores and reduced PPTs (Pā€Æ<ā€Æ0.04); decreased frontal N30 SEP (Pā€Æ<ā€Æ0.01); increased TMS map volume (Pā€Æ<ā€Æ0.03). These results indicate that muscle pain exerts modulatory effects on the sensorimotor cortical excitability and left DLPFC rTMS has analgesic effects and modulates pain-induced sensorimotor cortical adaptations. These findings suggest an important role of prefrontal to basal-ganglia function in sensorimotor cortical excitability and pain processing

    Movement does not promote recovery of motor output following acute experimental muscle pain

    Get PDF
    Objective. To examine the effect of motor activity on the magnitude and duration of altered corticomotor output following experimental muscle pain. Design. Experimental, pre-post test. Setting. University laboratory. Subjects. Twenty healthy individuals. Methods. Participants were randomly allocated to a Rest or Movement group. The Rest group sat quietly without moving for the duration of the experiment. The Movement group repeated a unimanual pattern of five sequential keystrokes as quickly and as accurately as possible immediately following the resolution of pain. Pain was induced into the right extensor carpi radialis brevis muscle by a bolus injection of 0.5 mL hypertonic saline. Corticomotor output was assessed as motor evoked potentials in response to transcranial magnetic stimulation before, immediately after, and at 10, 20, and 30 minutes following pain resolution. Pain intensity was recorded every 30 seconds using an 11-point numerical rating scale. Results. There was no difference in peak pain intensity (P < 0.09) or duration (P < 0.2) between groups. Corticomotor output was reduced in both groups (P < 0.002) at 10 minutes (P < 0.002), 20 minutes (P < 0.02), and 30 minutes (P < 0.037) following the resolution of pain relative to baseline. There was no difference between groups at any time point. Conclusions. Performance of motor activity immediately following the resolution of acute muscle pain did not alter the magnitude or duration of corticomotor depression. Understanding corticomotor depression in the postpain period and what factors promote recovery has relevance for clinical pain syndromes where ongoing motor dysfunction, in the absence of pain, may predispose to symptom persistence or recurrence

    Lumbar epidural fentanyl: segmental spread and effect on temporal summation and muscle pain

    Get PDF
    Background. Despite extensive use, different aspects of the pharmacological action of epidural fentanyl have not been clarified. We applied a multiā€modal sensory test procedure to investigate the effect of epidural fentanyl on segmental spread, temporal summation (as a measure for shortā€lasting central hyperexcitability) and muscle pain. Methods. Thirty patients received either placebo, 50 or 100 Āµg single dose of fentanyl epidurally (L2-3), in a randomized, doubleā€blind fashion. Heat pain tolerance thresholds at eight dermatomes from S1 to fifth cranial nerve (assessment of segmental spread), pain threshold to transcutaneous repeated electrical stimulation of the sural nerve (assessment of temporal summation) and pain intensity after injection of hypertonic saline into the tibialis anterior muscle (assessment of muscle pain) were recorded. Results. Fentanyl 100 Āµg, but not 50 Āµg, produced analgesia to heat stimulation only at L2. Surprisingly, no effect at S1 was detected. Both fentanyl doses significantly increased temporal summation threshold and decreased muscle pain intensity. Conclusions. The findings suggest that a single lumbar epidural dose of fentanyl should be injected at the spinal interspace corresponding to the dermatomal site of pain. Increased effect on L2 compared with S1 suggests that drug effect on spinal nerve roots and binding to opioid receptors on the dorsal root ganglia may be more important than traditionally believed for the segmental effect of epidurally injected fentanyl. Epidural fentanyl increases temporal summation threshold and could therefore contribute to prevention and treatment of central hypersensitivity states. I.M. injection of hypertonic saline is a sensitive technique for detecting the analgesic action of epidural opioids. Br J Anaesth 2003; 90: 467-7
    • ā€¦
    corecore