1,325 research outputs found

    Quantisation without Gauge Fixing: Avoiding Gribov Ambiguities through the Physical Projector

    Get PDF
    The quantisation of gauge invariant systems usually proceeds through some gauge fixing procedure of one type or another. Typically for most cases, such gauge fixings are plagued by Gribov ambiguities, while it is only for an admissible gauge fixing that the correct dynamical description of the system is represented, especially with regards to non perturbative phenomena. However, any gauge fixing procedure whatsoever may be avoided altogether, by using rather a recently proposed new approach based on the projection operator onto physical gauge invariant states only, which is necessarily free on any such issues. These different aspects of gauge invariant systems are explicitely analysed within a solvable U(1) gauge invariant quantum mechanical model related to the dimensional reduction of Yang-Mills theory.Comment: 22 pages, no figures, plain LaTeX fil

    Topological Background Fields as Quantum Degrees of Freedom of Compactified Strings

    Get PDF
    It is shown that background fields of a topological character usually introduced as such in compactified string theories correspond to quantum degrees of freedom which parametrise the freedom in choosing a representation of the zero mode quantum algebra in the presence of non-trivial topology. One consequence would appear to be that the values of such quantum degrees of freedom, in other words of the associated topological background fields, cannot be determined by the nonperturbative string dynamics.Comment: 1+10 pages, no figure

    Topologically Massive Gauge Theories and their Dual Factorised Gauge Invariant Formulation

    Get PDF
    There exists a well-known duality between the Maxwell-Chern-Simons theory and the self-dual massive model in 2+1 dimensions. This dual description has been extended to topologically massive gauge theories (TMGT) in any dimension. This Letter introduces an unconventional approach to the construction of this type of duality through a reparametrisation of the master theory action. The dual action thereby obtained preserves the same gauge symmetry structure as the original theory. Furthermore, the dual action is factorised into a propagating sector of massive gauge invariant variables and a sector with gauge variant variables defining a pure topological field theory. Combining results obtained within the Lagrangian and Hamiltonian formulations, a new completed structure for a gauge invariant dual factorisation of TMGT is thus achieved.Comment: 1+7 pages, no figure

    Nonabelian Global Chiral Symmetry Realisation in the Two-Dimensional N Flavour Massless Schwinger Model

    Get PDF
    The nonabelian global chiral symmetries of the two-dimensional N flavour massless Schwinger model are realised through bosonisation and a vertex operator construction.Comment: To appear in the Proceedings of the Fourth International Workshop on Contemporary Problems in Mathematical Physics, November 5-11, 2005, Cotonou (Republic of Benin) (World Scientific, Singapore, 2006), 1+7 pages, no figure

    The Physical Projector and Topological Quantum Field Theories: U(1) Chern-Simons Theory in 2+1 Dimensions

    Get PDF
    The recently proposed physical projector approach to the quantisation of gauge invariant systems is applied to the U(1) Chern-Simons theory in 2+1 dimensions as one of the simplest examples of a topological quantum field theory. The physical projector is explicitely demonstrated to be capable of effecting the required projection from the initially infinite number of degrees of freedom to the finite set of gauge invariant physical states whose properties are determined by the topology of the underlying manifold.Comment: 24 pages, no figures, plain LaTeX file; one more reference added. Final version to appear in Jour. Phys.

    Bosonization of the Schwinger Model by Noncommutative Chiral Bosons

    Get PDF
    Bosonization of the Schwinger model with noncommutative chiral bosons is considered on a spacetime of cylinder topology. Using point splitting regularization, manifest gauge invariance is maintained throughout. Physical consequences are discussed.Comment: To appear in the Proceedings of the Fourth International Workshop on Contemporary Problems in Mathematical Physics, November 5-11, 2005, Cotonou (Republic of Benin) (World Scientific, Singapore, 2006), 1+8 pages, no figure

    On Electric Fields in Low Temperature Superconductors

    Get PDF
    The manifestly Lorentz covariant Landau-Ginzburg equations coupled to Maxwell's equations are considered as a possible framework for the effective description of the interactions between low temperature superconductors and magnetic as well as electric fields. A specific experimental set-up, involving a nanoscopic superconductor and only static applied fields whose geometry is crucial however, is described, which should allow to confirm or invalidate the covariant model through the determination of the temperature dependency of the critical magnetic-electric field phase diagram and the identification of some distinctive features it should display.Comment: 14 pages (Latex) + 2 postscript figure

    Gauge Invariant Factorisation and Canonical Quantisation of Topologically Massive Gauge Theories in Any Dimension

    Full text link
    Abelian topologically massive gauge theories (TMGT) provide a topological mechanism to generate mass for a bosonic p-tensor field in any spacetime dimension. These theories include the 2+1 dimensional Maxwell-Chern-Simons and 3+1 dimensional Cremmer-Scherk actions as particular cases. Within the Hamiltonian formulation, the embedded topological field theory (TFT) sector related to the topological mass term is not manifest in the original phase space. However through an appropriate canonical transformation, a gauge invariant factorisation of phase space into two orthogonal sectors is feasible. The first of these sectors includes canonically conjugate gauge invariant variables with free massive excitations. The second sector, which decouples from the total Hamiltonian, is equivalent to the phase space description of the associated non dynamical pure TFT. Within canonical quantisation, a likewise factorisation of quantum states thus arises for the full spectrum of TMGT in any dimension. This new factorisation scheme also enables a definition of the usual projection from TMGT onto topological quantum field theories in a most natural and transparent way. None of these results rely on any gauge fixing procedure whatsoever.Comment: 1+25 pages, no figure
    • …
    corecore