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Abstract

It is shown that background fields of a topological character usually introduced as such in
compactified string theories correspond to quantum degrees of freedom which parametrise
the freedom in choosing a representation of the zero mode quantum algebra in the presence of
non-trivial topology. One consequence would appear to be that the values of such quantum
degrees of freedom, in other words of the associated topological background fields, cannot
be determined by the nonperturbative string dynamics.
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1 Introduction

The study of string theories compactified onto a large variety of spaces with different topologies
and geometries has produced profound insights into the nonperturbative properties of these
systems, ultimately leading to the discovery of D-branes and the web of dualities relating all
known superstring theories to the yet to be constructed underlying M-theory (for reviews and
references to the original literature, see Refs. [1, 2]). Even in the simplest framework of flat
torus compactification, besides the geometry of the internal manifold, further background fields
of a topological character such as an antisymmetric tensor and Wilson lines are introduced.[3]
Analogous background fields also exist for more intricate compactifications with richer topology
and geometry. Even though one could invoke possible dynamical mechanisms that would lead
to non-vanishing expectation values of such background fields given a specific compactification
topology, it may seem still somewhat unsettling to have to introduce in some ad-hoc fashion
such background fields into a theory which purportedly ought to define the ultimate fundamental
framework for all of matter and its quantum interactions.

In this brief note, we wish to point out that in the presence of compactifications of non-
trivial topology possessing non-contractible cycles, namely possessing a non-trivial fundamental
or first homotopy group, there exist specific quantum degrees of freedom to which classical string
theory is oblivious. These quantum degrees of freedom play precisely a role akin to that of
topological background fields, independently from the metric tensor specifying the compactified
geometry of which the value is presumably determined dynamically. The values of these quantum
degrees of freedom are related to a choice of representation of the Heisenberg algebra for the zero
mode degrees of freedom of the string vibrating in the compactified dimensions. From that point
of view, the situation is somewhat similar to that with spin for a rotationally invariant system:
which representation of the rotation group algebra is to be used for the quantised system is matter
of the experimental determination of the spin of the physical system under consideration. There
is no known dynamical framework which would predict the spin value, say, of the electron.
Likewise, values for the topological background fields in string compactifications besides the
compactified geometry may possibly not be set through dynamical considerations, but could
remain contingent on a choice of representation for specific algebraic structures intrinsic to
quantum dynamics in the presence of non-trivial topology.

We shall not present here a detailed discussion for large classes of superstring compact-
ifications, but restrict to the core facts we wish to emphasize by staying within the simplest
context of the toroidal compactification of free oriented bosonic strings in Minkowski spacetime.
As is well known, from a quantum point of view the oscillation modes of the string correspond to
creation and annihilation operators, whereas the position and momentum operators describing
the motion of its centre of mass satisfy the Heisenberg algebra. However, as discussed once
again in a recent paper[4] even though such results have been known for a long time[5, 6] but
not as widely as they would deserve to be, contrary to the situation in the case of Euclidean
space, the Heisenberg algebra admits an infinity of unitarily inequivalent representations if the
position operator takes its eigenvalues on a manifold with a non-trivial first homotopy group.
This is the case for the string centre of mass if some spatial dimensions are compactified on a
torus, for instance. The purpose of this note is to account for the existence of these inequivalent
representations of the Heisenberg algebra, namely genuine quantum degrees of freedom which
decouple from the classical dynamics, in torus compactifications of oriented bosonic strings.[7]
Extensions to other classes of superstring theories and/or compactifications should also be of
interest.
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Our presentation is organised as follows. First the quantum description of the motion
of a pointlike object on an arbitrary manifold, and the construction of the inequivalent repre-
sentations of the corresponding Heisenberg algebra, as described in Ref. [4], are recalled in the
next section. Then Sec. 3 particularises the discussion to the case of a Minkowski spacetime
with some spatial dimensions compactified onto a torus. Next in Sec. 4 the analysis is applied
specifically to the well known canonical quantisation of open and closed oriented bosonic strings
on this compactified spacetime (see, e.g., Refs. [1, 2, 8, 9, 10]). Finally Sec. 5 addresses some
possible implications of our results.

2 The Heisenberg Algebra

Let us first consider a physical system describing the motion of a pointlike object1 on an arbitrary
connected oriented manifold M of dimension N . Units such that ~ = 1 = c are used throughout.

Classically, within the Hamiltonian setting, the state of the system is described by local
configuration space coordinates qn and their associated canonical conjugate momenta pn, with
the Poisson brackets

{qn, qm} = 0, {pn, pm} = 0, {qn, pm} = δn
m, n,m = 1, 2, · · · ,N . (1)

Following the usual rules of canonical quantisation, one associates to these classical degrees of
freedom linear self-adjoint operators q̂n and p̂n acting on the “Hilbert” space of quantum states,
satisfying the Heisenberg algebra

[q̂n, q̂m] = 0, [p̂n, p̂m] = 0, [q̂n, p̂m] = iδn
m, n,m = 1, 2, · · · ,N . (2)

In order to represent the Heisenberg algebra on the Hilbert space, let us assume there
exists a basis of eigenvectors |q〉 of the configuration space or position operators q̂n,

q̂n|q〉 = qn|q〉, (3)

in one-to-one correspondence with the points of the manifold M. Assuming implicitly a positive
definite hermitian inner product on the space of quantum states, the normalisation of the position
eigenstates,

〈q|q′〉 =
1

√

g(q)
δ(q − q′), (4)

may always be expressed in terms of a volume N -form

Ω(q) =
√

g(q) dq1 ∧ . . . ∧ dqN . (5)

Position operators act on a quantum state |ψ〉 according to

〈q|q̂n|ψ〉 = qn〈q|ψ〉, (6)

while it may be shown, based on the abstract Heisenberg algebra in (2), that the action of the
momentum operators may be parametrised according to

〈q|p̂n|ψ〉 =
−i

g1/4(q)

[

∂

∂qn
+ iAn(q)

]

g1/4(q)〈q|ψ〉 (7)

1The possible generalisation of similar considerations to extended objects is an open issue.
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in terms of a real closed 1-form

A(q) = An(q)dqn, dA(q) = 0. (8)

The real forms Ω(q) and A(q) characterise the considered representation of the Heisenberg
algebra.

Under a general change of position eigenstate basis in Hilbert space of the following form,

|q〉(2) = R(q) eiθ(q) |q〉(1), (9)

namely through a simple change of phase and normalisation both left unspecified by the above
considerations, and which thus relates, up to their normalisation, unitarily equivalent representa-
tions2 of the Heisenberg algebra, the two relevant forms characteristic of any such representation
transform as

Ω(2)(q) =
1

R2(q)
Ω(1)(q), A(2)(q) = A(1)(q) + dθ(q). (10)

Hence unitarily inequivalent representations of the Heisenberg algebra are in one-to-one corre-
spondence with the equivalence classes of closed 1-forms differing by exact 1-forms. These classes
constitute the 1-cohomology of the manifold M, which is non-trivial if the manifold is not sim-
ply connected. In the case of the simply connected Euclidean configuration space manifold, one
recovers the well known Stone–von Neumann theorem stating that for Euclidean spaces, up to
arbitrary unitary transformations there exists a single representation of the Heisenberg algebra
given by the usual plane wave realisations.

3 The Heisenberg Algebra and Torus Compactification

Let us now particularise our discussion to the motion of a pointlike object on a Minkowski
spacetime of total dimension D = D1 +D2, where D2 spatial dimensions are compactified onto
a Euclidean torus.

To represent this direct product compactified spacetime, first, one has a Minkowski space-
time MD1 of dimension D1 with coordinates xµ and metric

ηµν = diag(−1, 1, . . . , 1), µ, ν = 0, 1, · · · ,D1 − 1, (11)

and second, one has a Euclidean space ED2 of dimension D2, with cartesian coordinates yI and
Euclidean metric

δIJ = diag(1, . . . , 1), I, J = 1, 2, · · · ,D2. (12)

On the space ED2 and its dual ED2∗, let us then introduce dual bases {eaI} and {e∗aI }, with
e∗aI eb

I = δa
b , generating the lattices

Λ =
{

lI = laea
I : la ∈ Z

}

, Λ∗ =
{

kI = kae
∗a
I : ka ∈ Z

}

. (13)

The torus TD2 is then constructed by identifying points of ED2 of the form yI + 2πlI , with lI in
Λ. Finally the D-dimensional compactified spacetime is the direct product MD1 × TD2 .

2Strictly speaking, a change of normalisation does not define a unitary transformation. However since the
normalisation of position eigenstates, parametrised through the volume form, is of no physical relevance, only
local phase redefinitions of these eigenstates associated to any 0-form θ(q) on M are considered to define unitary
equivalent realisations of the Heisenberg algebra.
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The compactified spacetime MD1 ×TD2 is not simply connected, and its 1-cohomology is
thus non-trivial. Consequently the Heisenberg algebra of the position, x̂µ, ŷI , and momentum,
p̂xµ, p̂yI , operators admits inequivalent representations on the space of quantum states. Each of
these representations may univocally be characterised, on the one hand, say by the canonical
unit D-form associated to the Minkowskian geometry

Ω = dx1 ∧ . . . ∧ dxD1 ∧ dy1 ∧ . . . ∧ dyD2 , (14)

and on the other hand, by a real closed 1-form

A = AI dy
I (15)

associated to a constant vector AI in the unit cell of the dual lattice Λ∗. Introducing a basis of
eigenvectors |x, y〉 of the position operators x̂µ, ŷI , with the normalisation

〈x, y|x′, y′〉 = δ(x− x′) δ(y − y′), (16)

the action of the position and momentum operators on a quantum state |ψ〉 may be expressed
as

〈x, y|x̂µ|ψ〉 = xµ〈x, y|ψ〉, 〈x, y|p̂xµ|ψ〉 = −i ∂

∂xµ
〈x, y|ψ〉, (17)

and

〈x, y|ŷI |ψ〉 = yI〈x, y|ψ〉, 〈x, y|p̂yI |ψ〉 = −i
( ∂

∂yI
+ iAI

)

〈x, y|ψ〉. (18)

Finally it is useful to identify in the Hilbert space a basis of vectors |px, py〉 diagonalising
the momentum operators p̂xµ, p̂yI . Their configuration space wave functions obey the differential
equations

−i ∂

∂xµ
〈x, y|px, py〉 = pxµ〈x, y|px, py〉 (19)

and

−i
( ∂

∂yI
+ iAI

)

〈x, y|px, py〉 = pyI〈x, y|px, py〉, (20)

with the general solution

〈x, y|px, py〉 = C exp i
(

px · x+ (py −A) · y
)

, (21)

C being some arbitrary integration constant. The operators p̂xµ admit real eigenvalues pxµ = pµ,
while single-valuedness or periodicity conditions on the torus

〈x, y + 2πl|px, py〉 = 〈x, y|px, py〉, lI ∈ Λ, (22)

restrict the eigenvalues of the operators p̂yI to the quantised spectrum pyI = kI +AI , where kI

is a vector of the dual lattice Λ∗. Imposing the normalisation conditions

〈p, k +A|p′, k′ +A〉 = δ(p − p′) δkk′ (23)

and fixing the arbitrary phase to unity, the configuration space wave functions read

〈x, y|p, k +A〉 = (2π)−D/2V −1/2 exp i(p · x+ k · y), (24)

where V is the volume of the torus.
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4 Torus Compactification of Bosonic Strings

We are now ready to address open and closed oriented bosonic strings on the toroidally compact-
ified spacetime, focusing on the motion of the centre of mass in light of the previous discussion.

Consider a free relativistic oriented bosonic string. Its world-sheet, parametrised by coor-
dinates σα (α = 0, 1) with σ0 ≡ τ in [τ1, τ2] and σ1 ≡ σ in [0, π], is equipped with an intrinsic
metric γαβ(τ, σ) of signature (−,+), and embedded through functions xµ(τ, σ) and yI(τ, σ) into
the compactified spacetime MD1 × TD2, with total dimension D restricted to the critical value,
D = 26, for the usual reasons of quantum consistency. The dynamics of the system is determined
by the linear Polyakov action

S[x, y, γ] = − 1

4πα′

∫ τ2

τ1

dτ

∫ π

0
dσ

√

− det γ γαβ
[

ηµν∂αx
µ∂βx

ν + δIJ∂αy
I∂βy

J
]

, (25)

where α′ is the Regge slope.

The usual Hamiltonian analysis and canonical quantisation of the system is readily achie-
ved. Local gauge symmetries associated to world-sheet diffeomorphisms and Weyl transforma-
tions are partly fixed by choosing the conformal gauge. Results remain identical of course when
working in the light-cone gauge.3

4.1 Open strings

Let us first concentrate on the case of open oriented strings. In the conformal gauge, the
equations of motion

∂2
τx

µ − ∂2
σx

µ = 0, ∂2
τ y

I − ∂2
σy

I = 0, (26)

together with the Neumann boundary conditions

∂σx
µ(τ, 0) = ∂σx

µ(τ, π) = 0, ∂σy
I(τ, 0) = ∂σy

I(τ, π) = 0, (27)

lead to the classical solutions

xµ(τ, σ) = xµ + 2α′pµ
xτ + i

√
2α′

∑

n∈Z0

1

n
αµ

ne
−inτ cosnσ, (28)

yI(τ, σ) = yI + 2α′pI
yτ + i

√
2α′

∑

n∈Z0

1

n
αI

ne
−inτ cosnσ. (29)

At the quantum level, the zero modes x̂µ, ŷI and p̂xµ, p̂yI satisfy a Heisenberg algebra, while the
oscillator modes α̂µ

m, α̂
I
m correspond to creation or annihilation operators according to whether

the integer mode index m is negative or positive, respectively. The space of quantum states is
obtained as the tensor product of Heisenberg and Fock representation spaces.

The freedom available in the choice of Heisenberg representation for the compactified zero
modes and parametrised by a vector AI in the fundamental cell of the dual lattice Λ∗, implies
that one could consider different types or sectors of such open strings, each characterised by a
different value of AI(α) distinguished by the label α. This situation is reminiscent of that for
spinning strings for which, depending on the boundary conditions for the world-sheet spinors, one

3The latter has to be properly defined in the presence of compactified spacelike dimensions, namely the gauge
fixed light-cone coordinate must not involve any of the compactified components.
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obtains Ramond or Neveu–Schwarz sectors distinguished by the representations of the fermionic
Fock algebra, and in particular that of its zero mode sector.

More generally still, by adding Chan–Paton factors to the ends of open strings, we seem to
be free to choose independently in each sector (i, j) (1 ≤ i, j ≤ N), possibly further distinguished
by the label α, an arbitrary representation of the Heisenberg algebra, characterised by a vector
A

ij
I (α) in the unit cell of the dual lattice Λ∗.

However a consistent description of string interactions requires charge and momentum
conservation. These conservation laws lead, for the annihilation of two, three or more strings,
to relations such as

A
ij
I (α) +A

ji
I (β) = 0 (modΛ∗), A

ij
I (α) +A

jk
I (β) +Aki

I (γ) = 0 (mod Λ∗), . . . (30)

where the values of the sector labels α, β and γ must be correlated in a fashion to be specified,
in relation to the properties of the string interactions being considered.

A general analysis of the consequences of the freedom, of a topological origin, in the choice
of quantum degrees of freedom A

ij
I (α) for the compactified bosonic zero mode algebra would be

of interest. In this note we restrict solely to the simpler setting, namely that in which there is
only a single type of open string in each Chan–Paton sector, the label α above distinguishing
the choices Aij

I (α) then taking a single value. In that case, the solutions for the vectors Aij
I are

of the form
A

ij
I = Ai

I −A
j
I , i, j = 1, 2, · · · , N, (31)

with Ai
I in the fundamental cell of the dual lattice Λ∗.

Physical states are defined by the usual annihilation Viraroso constraints. In particular,
the zero mode generator inclusive of the quantum subtraction constant required by conformal
invariance,

L̂0 = α′p̂2
x + α′p̂2

y + N̂ − 1, (32)

where N̂ is the total string level excitation operator, leads to the following mass spectrum

α′M2 = α′
(

k +Ai −Aj
)2

+N − 1, (33)

where kI is a vector of the dual lattice Λ∗, and N a positive integer specifying the N̂ eigenvalue.

4.2 Closed strings

Let us now turn to the case of closed oriented strings. In the conformal gauge, the equations of
motion

∂2
τx

µ − ∂2
σx

µ = 0, ∂2
τ y

I − ∂2
σy

I = 0, (34)

together with the periodicity conditions

xµ(τ, π) = xµ(τ, 0), yI(τ, π) = yI(τ, 0) + 2πlI , (35)

where the vector lI in the lattice Λ parametrises the torus winding sector of the string configu-
ration, possess the following classical solutions

xµ(τ, σ) = xµ + 2α′pµ
xτ +

i

2

√
2α′

∑

n∈Z0

1

n

[

αµ
n e

−2in(τ−σ) + ᾱµ
n e

−2in(τ+σ)
]

, (36)

yI(τ, σ) = yI + 2α′pI
yτ + 2lIσ +

i

2

√
2α′

∑

n∈Z0

1

n

[

αI
n e

−2in(τ−σ) + ᾱI
n e

−2in(τ+σ)
]

. (37)
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At the quantum level, in a given winding sector lI , the zero modes x̂µ, ŷI and p̂xµ, p̂yI satisfy
a Heisenberg algebra, while the oscillator modes α̂µ

m, α̂
I
m and ˆ̄αµ

m, ˆ̄αI
m correspond to creation or

annihilation operators. The space of quantum states is constructed as the tensor product of
Heisenberg and Fock representation spaces.

When accounting for all possible winding sectors of the string, one may apparently freely
choose independently in each sector lI an arbitrary representation of the Heisenberg algebra
characterised by a vector AI(l) in the unit cell of the dual lattice Λ∗.4 However once again
winding and momentum conservation laws lead, for the annihilation of two, three or more
strings, to restrictions such as

AI(l1) +AI(l2) = 0 (mod Λ∗), l1 + l2 = 0,

AI(l1) +AI(l2) +AI(l3) = 0 (modΛ∗), l1 + l2 + l3 = 0, . . . (38)

which suggest a general solution of the linear form

AI(l) = BIJ l
J , (39)

where the real coefficients BIJ may be viewed as defining some 2-index covariant tensor of the
compactified Euclidean space. However, since AI(l) is defined modulo a vector of the dual
lattice Λ∗, BIJ itself is defined modulo a 2-tensor of Λ∗, namely BIJ belongs only to the “fun-
damental cell” of such 2-tensors. Furthermore BIJ may be decomposed into a symmetric and
an antisymmetric part in the two indices I and J .

Among the Virasoro constraints defining physical states, the zero mode generators

L̂0 =
α′

4
p̂2

x +
α′

4

(

p̂y − α′−1 l̂
)2

+ N̂ − 1, ˆ̄L0 =
α′

4
p̂2

x +
α′

4

(

p̂y + α′−1l̂
)2

+ ˆ̄N − 1, (40)

with N̂ and ˆ̄N the total string level excitation operators for each of the world-sheet chiral sectors,
lead to the following mass spectrum

α′M2 = α′
(

k +Bl
)2

+ α′−1l2 + 2N + 2N̄ − 4 (41)

as well as the level matching condition

N − N̄ = kI l
I +BIJ l

I lJ , (42)

where lI is a winding vector of the lattice Λ, kI a momentum vector of the dual lattice Λ∗, and
N , N̄ positive integers.

In order that whatever the winding sector the set of physical states be non-empty, we
must further require that the symmetric part of BIJ is a 2-tensor of the dual lattice Λ∗, while
since AI(l) is defined up to vectors in the dual lattice anyway, one may simply restrict BIJ to
be purely antisymmetric and thus be lying in the fundamental cell of antisymmetric 2-tensors
of Λ∗. Consequently, the level matching condition finally reads

N − N̄ = kI l
I . (43)

Furthermore, it may easily be shown that such a choice of representation of the Heisenberg
algebra, characterised by an antisymmetric tensor BIJ defined modulo the dual lattice Λ∗, is also

4Here again we ignore the possibility of still more generality, which would be afforded by including different
string sectors AI(l; α) in the manner discussed previously for the open string case.
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consistent with one-loop modular invariance of the partition function of the closed string. Given
that our results coincide, as indicated hereafter, with those of closed string torus compactification
in presence of a constant background antisymmetric field BIJ for which modular invariance is
well established,[3] the same conclusion readily follows in our setting. Any other form chosen
for AI(l) does not seem capable of meeting the requirement of modular invariance necessary for
the quantum consistency of interacting strings.[7]

5 Discussion and Perspectives

In this note, general results relevant to the Heisenberg algebra on an arbitrary manifold of non-
trivial topology have been applied to the canonical quantisation of open and closed oriented
bosonic strings on a toroidally compactified Minkowski spacetime. Taking into account inequiv-
alent representations of the algebra describing the centre of mass of the strings, which then arise
from the non-trivial spacetime topology, results of interest have been established, in particular
through the physical mass spectra of such string models.

In fact, these spectra are well known in the literature,[1, 2, 3, 8, 9, 10] but they are
then obtained by quantising strings interacting with constant external topological fields in the
compactified spatial dimensions (whether an antisymmetric tensor or Wilson lines) in addition to
the metric background, while choosing the trivial representation for the algebra describing their
centre of mass. As a matter of fact, the open string spectrum (33) can be reproduced by coupling
the ends of an open string to a constant diagonal U(N) gauge field5 AI = diag(A1

I , . . . , A
N
I )

SA[x, y, γ, g0, gπ] = S[x, y, γ] + i

∫ τ2

τ1

dτ Tr
[

Kg−1(∂τ + iAI∂τy
I)g

]

∣

∣

∣

σ=π

σ=0
. (44)

Under T-duality to the D-brane picture, the values for the parameters Ai
I are known to corre-

spond to positions of the D-branes on the compactified torus.[1, 2] In the present setting, these
positions are seen to correspond, through T-duality, to quantum degrees of freedom arising from
the non-trivial representation theory of the bosonic zero mode Heisenberg algebra in the pres-
ence of non-trivial topology. In the same way, the closed string spectrum (41), together with
the level matching condition (43), can be reproduced by coupling a closed string to a constant
antisymmetric tensor field BIJ [3]

SB [x, y, γ] = S[x, y, γ] − 1

4π

∫ τ2

τ1

dτ

∫ π

0
dσ ǫαβBIJ∂αy

I∂βy
J . (45)

Even though reproducing well known results, our approach provides thus a new way to
look at the interaction of bosonic strings with these topological background fields (this does
not include the background metric field describing the compactified geometry). While these
couplings are usually imposed by hand as external constraints with values to be determined
presumably through nonpertubative dynamics, here they are rather understood to correspond
to new intrinsic quantum degrees of freedom arising from a complete quantisation of the strings,
when proper account is given of the freedom in choosing representations for the abstract algebraic

5In the literature, the spectrum of an open string in a constant diagonal U(N) gauge field is determined[1, 2]
by analogy with that of a particle in a constant U(1) gauge field. In fact, this spectrum follows from the action
(44), where K is the highest weight of the fundamental representation of U(N), and g0(τ ) and gπ(τ ) in U(N)
describe the Chan–Paton degrees of freedom attached to both ends of the string. See Ref. [11] for a detailed
discussion.
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structures defining a quantised dynamics. From that point of view, this result also suggests that
values for such topological background fields are not to be determined through the dynamics.

Our discussion could be extended in many ways. Here it was presented in the simplest of
possible contexts, namely that of open and closed oriented bosonic strings compactified on torii.
The generalization to superstrings may appear to be obvious at least for the bosonic zero mode
Heisenberg algebra, but a closer look at the issue of fermionic zero modes with regards to the
situation in the bosonic sector and manifest world-sheet supersymmetry would seem warranted
nevertheless. More general settings than the simple example discussed here, involving different
interacting string sectors, could also be investigated thoroughly, along the lines mentioned above.
It is to be expected that more general solutions to the conditions in (30) would translate, in the
T-dual D-brane picture, to constructions based on orbifold procedures. And finally, extensions
to other classes of non-flat compactifications of greater relevance to string phenomenology would
also deserve a detailed study, including the case of non-oriented strings.

In parallel to such issues, it could also be of interest to investigate, in the case of open
strings, how these quantum degrees of freedom associated to zero modes of non-trivial topology,
would translate into quantum degrees of freedom for the closed string channel of one-loop open
string amplitudes, and vice versa. A preliminary study[7] of that issue has shown that the
quantum degrees of freedom discussed in this note for both the open and the closed string
sectors are not in direct relationship through this open-closed string duality.
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