623 research outputs found

    Predictive Control for Alleviation of Gust Loads on Very Flexible Aircraft

    No full text
    In this work the dynamics of very flexible aircraft are described by a set of non-linear, multi-disciplinary equations of motion. Primary structural components are represented by a geometrically-exact composite beam model which captures the large dynamic deformations of the aircraft and the interaction between rigid-body and elastic degrees-of-freedom. In addition, an implementation of the unsteady vortex-lattice method capable of handling arbitrary kinematics is used to capture the unsteady, three-dimensional flow-eld around the aircraft as it deforms. Linearization of this coupled nonlinear description, which can in general be about a nonlinear reference state, is performed to yield relatively high-order linear time-invariant state-space models. Subsequent reduction of these models using standard balanced truncation results in low-order models suitable for the synthesis of online, optimization-based control schemes that incorporate actuator constraints. Predictive controllers are synthesized using these reduced-order models and applied to nonlinear simulations of the plant dynamics where they are shown to be superior to equivalent optimal linear controllers (LQR) for problems in which constraints are active

    Numerical Aspects of Nonlinear Flexible Aircraft Flight Dynamics Modeling

    No full text
    A critical review of the numerical approximations made in flexible aircraft dynamics modeling is presented. The baseline model is a geometrically-exact. composite beam model describing the flexible-body dynamics which are subject to aerodynamic forces predicted using the unsteady vortex-lattice method (UVLM). The objectivity of the beam formulation is first investigated for static problems with large nodal rotations. It is found that errors associated with non-objectivity of the formulation are minimized to negligible levels using quadratic (3-noded) elements. In addition to this, two force calculation methods are presented and compared for the UVLM. They show subtle but important differences when applied to unsteady aerodynamic problems with large displacements. Nonlinear static aeroelastic analysis of a very flexible high-altitude long-endurance (HALE) wing is also carried out. and time-marching analysis is applied to the Goland wing in order to predict to the response at, and around, the flutter velocity. Conclusions drawn from the studies in this work work are directly applicable in the identification of appropriate modeling strategies in nonlinear flexible aircraft flight dynamics simulations. © 2013 by Robert J. S. Simpson and Rafael Palacios

    Robust Aeroelastic Control of Very Flexible Wings using Intrinsic Models

    No full text
    This paper explores the robust control of large exible wings when their dynamics are written in terms of intrinsic variables, that is, velocities and stress resultants. Assuming 2-D strip theory for the aerodynamics, the resulting nonlinear aeroelastic equations of motion are written in modal coordinates. It is seen that a system which experiences large displacements can nonetheless be accurately described by a system with only weak nonlinear couplings in this description of the wing dynamics. As result, a linear robust controller acting on a control surface is able to effectively provide gust load alleviation and flutter suppression even when the wing structure undergoes large deformations. This is numerically demonstrated on various representative test cases. © 2013 by Yinan Wang, Andrew Wynn and Rafael Palacios

    An Intrinsic Description of the Nonlinear Aeroelasticity of Very Flexible Wings

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90662/1/AIAA-2011-1917-972.pd

    Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90634/1/AIAA-55313-740.pd

    Model Reduction in Flexible-Aircraft Dynamics with Large Rigid-Body Motion

    No full text
    This paper investigates the model reduction, using balanced realizations, of the unsteady aerodynamics of maneuvering flexible aircraft. The aeroelastic response of the vehicle, which may be subject to large wing deformations at trimmed flight, is captured by coupling a displacement-based, flexible-body dynamics formulation with an aerodynamic model based on the unsteady vortex lattice method. Consistent linearization of the aeroelastic problem allows the projection of the structural degrees of freedom on a few vibration modes of the unconstrained vehicle, but preserves all couplings between the rigid and elastic motions and permits the vehicle fiight dynamics to have arbitrarily-large angular velocities. The high-order aerodynamic system, which defines the mapping between the small number of generalized coordinates and unsteady aerodynamic loads, is then reduced using the balanced truncation method. Numerical studies on a representative high-altitude, long-endurance aircraft show a very substantial reduction in model size, by up to three orders of magnitude, that leads to model orders (and computational cost) similar to those in conventional frequency-based methods but with higher modeling fidelity to compute maneuver loads. Closed-loop results for the Goland wing finally demonstrate the application of this approach in the synthesis of a robust flutter suppression controller. © 2013 by Henrik Hesse and Rafael Palacios

    Fuzzy uncertainty analysis in the flutter boundary of an aircraft wing subjected to a thrust force

    Get PDF
    In this study, flutter uncertainty analysis of an aircraft wing subjected to a thrust force is investigated using fuzzy method. The linear wing model contains bending and torsional flexibility and the engine is considered as a rigid external mass with thrust force. Peters’ unsteady thin airfoil theory is used to model the aerodynamic loading. The aeroelastic governing equations are derived based on Hamilton’s principle and converted to a set of ordinary differential equations using Galerkin method. In the flutter analysis, it is assumed that the wing static deflections do not have influence on the results. The wing bending and torsional rigidity, aerodynamic lift curve slope and air density are considered as uncertain parameters and modelled as triangle and trapezium membership functions. The eigenvalue problem with fuzzy input parameters is solved using fuzzy Taylor expansion method and a sensitivity analysis is performed. Also, the upper and lower bounds of flutter region at different α-cuts are extracted. Results show that this method is a low-cost method with reasonable accuracy to estimate the flutter speed and frequency in the presence of uncertainties

    Acoustic Nonlinearities in Adhesive Joints

    Full text link
    Ultrasonic techniques have been used successfully to measure important bond parameters and to detect various defects in adhesive joints for about twenty years. Recent reviews of nondestructive testing of adhesively bonded structures can be found in the literature [1–3]. For direct strength assessment, the reliability of these techniques leaves much to be desired. Linear acoustic parameters are only indirectly correlated to material and bond strength, therefore we must rely on dubious empirical relations between the measured parameter (e.g., velocity or attenuation) and the sought strength parameter on a case-to-case basis. On the other hand, it is well known that failure of most materials and bonds is usually preceded by some kind of nonlinear mechanical behavior, well before appreciable plastic deformation occurs, i.e. within the range of nondestructive testing. This macroscopic nonlinearity is due to a number of different causes such as weakening of covalent bonds with increased atomic spacing, reduction in the number of these bonds, etc. It seems to be reasonable to assume that nonlinear parameters measured at approximately 10–20% of the ultimate stress level are more directly correlated to mechanical strength than linear ones measured at negligibly low ultrasonic amplitudes:</p

    The risk of progression to type 1 diabetes is highly variable in individuals with multiple autoantibodies following screening

    Get PDF
    Aims/hypothesis: Young children who develop multiple autoantibodies (mAbs) are at very high risk for type 1 diabetes. We assessed whether a population with mAbs detected by screening is also at very high risk, and how risk varies according to age, type of autoantibodies and metabolic status. Methods: Type 1 Diabetes TrialNet Pathway to Prevention participants with mAbs (n = 1815; age, 12.35 ± 9.39 years; range, 1-49 years) were analysed. Type 1 diabetes risk was assessed according to age, autoantibody type/number (insulin autoantibodies [IAA], glutamic acid decarboxylase autoantibodies [GADA], insulinoma-associated antigen-2 autoantibodies [IA-2A] or zinc transporter 8 autoantibodies [ZnT8A]) and Index60 (composite measure of fasting C-peptide, 60 min glucose and 60 min C-peptide). Cox regression and cumulative incidence curves were utilised in this cohort study. Results: Age was inversely related to type 1 diabetes risk in those with mAbs (HR 0.97 [95% CI 0.96, 0.99]). Among participants with 2 autoantibodies, those with GADA had less risk (HR 0.35 [95% CI 0.22, 0.57]) and those with IA-2A had higher risk (HR 2.82 [95% CI 1.76, 4.51]) of type 1 diabetes. Those with IAA and GADA had only a 17% 5 year risk of type 1 diabetes. The risk was significantly lower for those with Index60 <1.0 (HR 0.23 [95% CI 0.19, 0.30]) vs those with Index60 values ≥1.0. Among the 12% (225/1815) ≥12.0 years of age with GADA positivity, IA-2A negativity and Index60 <1.0, the 5 year risk of type 1 diabetes was 8%. Conclusions/interpretation: Type 1 diabetes risk varies substantially according to age, autoantibody type and metabolic status in individuals screened for mAbs. An appreciable proportion of older children and adults with mAbs appear to have a low risk of progressing to type 1 diabetes at 5 years. With this knowledge, clinical trials of type 1 diabetes prevention can better target those most likely to progress
    • …
    corecore