449 research outputs found

    Mesenchyme Homeobox 2 Enhances Migration of Endothelial Colony Forming Cells Exposed to Intrauterine Diabetes Mellitus

    Get PDF
    Diabetes mellitus (DM) during pregnancy has long-lasting implications for the fetus, including cardiovascular morbidity. Previously, we showed that endothelial colony forming cells (ECFCs) from DM human pregnancies have decreased vasculogenic potential. Here, we evaluate whether the molecular mechanism responsible for this phenotype involves the transcription factor, Mesenchyme Homeobox 2 (MEOX2). In human umbilical vein endothelial cells, MEOX2 upregulates cyclin-dependent kinase inhibitor expression, resulting in increased senescence and decreased proliferation. We hypothesized that dysregulated MEOX2 expression in neonatal ECFCs from DM pregnancies decreases network formation through increased senescence and altered cell cycle progression. Our studies show that nuclear MEOX2 is increased in ECFCs from DM pregnancies. To determine if MEOX2 is sufficient and/or required to induce impaired network formation, MEOX2 was overexpressed and depleted in ECFCs from control and DM pregnancies, respectively. Surprisingly, MEOX2 overexpression in control ECFCs resulted in increased network formation, altered cell cycle progression, and increased senescence. In contrast, MEOX2 knockdown in ECFCs from DM pregnancies led to decreased network formation, while cell cycle progression and senescence were unaffected. Importantly, migration studies demonstrated that MEOX2 overexpression increased migration, while MEOX2 knockdown decreased migration. Taken together, these data suggest that altered migration may be mediating the impaired vasculogenesis of ECFCs from DM pregnancies. While initially believed to be maladaptive, these data suggest that MEOX2 may serve a protective role, enabling increased vessel formation despite exposure to a DM intrauterine environment. J. Cell. Physiol. 232: 1885-1892, 2017

    Epigenetic regulation in neonatal ECFCs following intrauterine exposure to gestational diabetes

    Get PDF
    poster abstractGestational diabetes (GDM) complicates up to 10% of pregnancies. In addition to acute risks, the children of diabetic mothers have an increased risk of obesity, diabetes, and hypertension, starting in childhood. While the causes of this increased risk are unknown, previous studies in our lab have identified functional deficits in endothelial colony forming cells (ECFCs) isolated from the cord blood of GDM pregnancies. This study focused on identifying genes that have altered epigenetic modifications that result in abnormal mRNA and protein expression in ECFCs from the cord blood GDM pregnancies. The objective of this study was to identify mRNA expression and DNA methylation alterations in ECFCs that may help identify the causes of ECFC dysfunction following intrauterine exposure to GDM. ECFCs were obtained from control and GDM pregnancies. DNA, RNA, and protein samples were isolated in parallel from ECFCs. RNA microarray analysis using the Affymetrix Human 1.0 Gene Array was used to identify gene expression alterations in GDM ECFCs compared to control ECFCs. Genome-wide DNA methylation was assessed using an Infinium 450K Methylation Array for DNA samples at >450,000 CpG sites. Correlation analysis was performed to identify possible sites that have altered CpG methylation and RNA expression. RNA expression results were validated using qRT-PCR and western blotting. Bisulfite sequencing of genomic DNA from the ECFCs was performed to identify additional sites with altered methylation for regions not included in the DNA methylation array. Of the 28,000 genetic loci tested, 596 mRNAs were altered between control and GDM ECFCs (p<0.01). More stringent criteria identified 38 genes for further investigation by limiting analysis to genes that exhibited increased or decreased expression by at least 50%, with a p<0.01. PLAC8 was identified as being increased 5-fold by microarray analysis, a result which was confirmed in two cohorts by qRT-PCR and western blotting. Analysis of the methylation array and bisulfite sequencing results revealed 3 regions surrounding the transcriptional start site of PLAC8 gene whose CpG methylation negatively correlate with RNA expression in samples from control and GDM ECFCs. In contrast, a CpG island is fully unmethylated in both control and GDM ECFCs. The discovery of CpG sites whose methylation correlates with PLAC8 mRNA expression in ECFCs is consistent with the hypothesis that intrauterine exposure to GDM results in epigenetic changes. Analysis of methylation at this site could be used as a biomarker for children of mothers with GDM who may be at risk for disease later in life. Using bisulfite pyrosequencing, we are currently developing assays to quickly determine if methylation of the PLAC8 putative promoter region is altered in cord blood mononuclear cells obtained from GDM or healthy control pregnancies. We are also investigating the role of methylation in regulating PLAC8 RNA expression, determining if there is altered histone modifications and transcription factor binding in these regions, and examining other genes that may comprise a molecular signature of ECFC dysfunction

    Transgelin Induces Dysfunction of Fetal Endothelial Colony-Forming Cells From Gestational Diabetic Pregnancies

    Get PDF
    Fetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including hypertension and cardiovascular disease. A key mechanism by which these complications occur is through the functional impairment of vascular progenitor cells, including endothelial colony-forming cells (ECFCs). Previously, we showed that fetal ECFCs exposed to GDM have decreased vasculogenic potential and altered gene expression. In this study, we evaluate whether transgelin (TAGLN), which is increased in GDM-exposed ECFCs, contributes to vasculogenic dysfunction. TAGLN is an actin-binding protein involved in the regulation of cytoskeletal rearrangement. We hypothesized that increased TAGLN expression in GDM-exposed fetal ECFCs decreases network formation by impairing cytoskeletal rearrangement resulting in reduced cell migration. To determine if TAGLN is required and/or sufficient to impair ECFC network formation, TAGLN was reduced and overexpressed in ECFCs from GDM and uncomplicated pregnancies, respectively. Decreasing TAGLN expression in GDM-exposed ECFCs improved network formation and stability as well as increased migration. In contrast, overexpressing TAGLN in ECFCs from uncomplicated pregnancies decreased network formation, network stability, migration, and alignment to laminar flow. Overall, these data suggest that increased TAGLN likely contributes to the vasculogenic dysfunction observed in GDM-exposed ECFCs, as it impairs ECFC migration, cell alignment, and network formation. Identifying the molecular mechanisms underlying fetal ECFC dysfunction following GDM exposure is key to ascertain mechanistically the basis for cardiovascular disease predisposition later in life

    A comparison of forward and backward pp pair knockout in 3He(e,e'pp)n

    Full text link
    Measuring nucleon-nucleon Short Range Correlations (SRC) has been a goal of the nuclear physics community for many years. They are an important part of the nuclear wavefunction, accounting for almost all of the high-momentum strength. They are closely related to the EMC effect. While their overall probability has been measured, measuring their momentum distributions is more difficult. In order to determine the best configuration for studying SRC momentum distributions, we measured the 3^3He(e,epp)n(e,e'pp)n reaction, looking at events with high momentum protons (pp>0.35p_p > 0.35 GeV/c) and a low momentum neutron (pn<0.2p_n< 0.2 GeV/c). We examined two angular configurations: either both protons emitted forward or one proton emitted forward and one backward (with respect to the momentum transfer, q\vec q). The measured relative momentum distribution of the events with one forward and one backward proton was much closer to the calculated initial-state pppp relative momentum distribution, indicating that this is the preferred configuration for measuring SRC.Comment: 8 pages, 9 figures, submitted to Phys Rev C. Version 2 incorporates minor corrections in response to referee comment
    corecore