328 research outputs found

    Interrupted Vs. Uninterrupted Training on BMD During Growth

    Get PDF
    This study compared a resistance training program where the exercise was uninterrupted (UT, i.e., continuous repetitions) against a resistance training program where the exercise was interrupted (IT, i.e., 3 exercise sessions during a training day) for enhancing bone modeling and bone mineral density (BMD) in maturating animals. The total volume of work performed between the two resistance training programs was equivalent by design. 24 young male rats were randomly divided into Control (Con, n = 8), UT (n = 8) and IT (n=8) resistance trained groups. The UT and IT groups were conditioned to climb a vertical ladder with weights appended to their tail 3 days/wk for 6 wks. After the 6-wk program, serum osteocalcin was not significantly different between groups, whereas the adjusted urinary deoxypyridinoline (DPD) was significantly lower for both UT (81.03 +/- 5.53) and IT (88.30 +/- 7.29) compared to Con (128.13 +/- 9.99). Tibial BMD (assessed via DXA) was significantly greater for UT (0.222 +/- 0.005g/cm(2)) and IT (0.219 +/- 0.003g/cm(2)) when compared to Con (0.205 +/- 0.004g/cm(2)). There was no significant difference in DPD or BMD between UT and IT groups. The results indicate that both interrupted and continuous, uninterrupted resistance training programs were equally effective in stimulating bone modeling

    Resistance Training and Bone Mineral Density During Growth

    Get PDF
    This study examined the efficacy of two different resistance training programs in enhancing bone modeling and bone mineral density (BMD) in maturating rats. One exercise mode involved lifting a lighter weight with more repetitions (LI), while the other regimen involved lifting a heavier weight with fewer repetitions (HI) where the total volume of work between exercise programs was equivalent by design. Twenty-three male rats were randomly divided into control (Con, n = 8), LI (n = 7), and HI (n = 8) groups. The LI and HI groups were conditioned to climb a vertical ladder with weights appended to their tail 4 days/wk for 6 wks. After training, serum osteocalcin (OC) was significantly (p \u3c 0.05) higher in both HI (45.2 +/- 1.7 ng/ml) and Ll (39.1 +/- 2.2 ng/ml) when compared to Con (29.9 +/- 0.9 ng/ml). Left tibial BMD was significantly (p \u3c 0.05) greater for HI (0.231 +/- 0.004 g/cm(2)) when compared to both LI (0.213 +/- 0.003 g/cm(2)) and Con (0.206 +/- 0.005 g/cm(2)) with no significant difference between Ll and Con. The results indicate that both HI and LI are effective in elevating serum OC, implicating an osteogenic response; however, only HI resulted in a significant elevation in BMD

    Limiting nutrients for bean production on contrasting soil types of Lake Victoria Crescent of Uganda

    Get PDF
    Common bean (Phaseolus vulgaris L.) is one of the most important grain legumes in East Africa, but its yield has remained below the genetic potential. Declining soil fertility is among the primary constraints to bean production in most East African bean producing regions. Often existing recommendations are generic and inept to guide farm level decision making on nutrient replenishment. A greenhouse nutrient omission study was conducted to determine the limiting nutrients in three soils of Masaka District, commonly cropped to beans: “Liddugavu” a Phaeozem, “Limyufumyufu” a Cambisol and “Luyinjayinga” an Umbrisol soil. Nine treatments; (i) complete nutrient treatment, (ii) N omitted, (iii) P omitted, (iv) K omitted, (v) Mg omitted, (vi) S omitted, (vii) Ca omitted, (viii) Micronutrients omitted and (ix) control without nutrients. Each treatment was randomly assigned to the three soils and replicated three times using a completely randomised design. Nitrogen, phosphorus and potassium were limiting nutrients for bean production in Umbrisol (Luyinjayinja) while in Cambisol (‘Limyufumyufu), common bean production was most limited by soil acidity. The performance varied with soil types, with beans grown on the Phaeozem registering greater leaf number and growth, confirming both scientist’s and local farmer’s knowledge that this soil has greater potential than the other two soils

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpre−definedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmainte−nancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical
    • 

    corecore