369 research outputs found

    Integrative analysis of large-scale biological data sets

    Get PDF
    We present two novel web-applications for microarray and gene/protein set analysis, ArrayMining.net and TopoGSA. These bioinformatics tools use integrative analysis methods, including ensemble and consensus machine learning techniques, as well as modular combinations of different analysis types, to extract new biological insights from experimental transcriptomics and proteomics data. They enable researchers to combine related algorithms and datasets to increase the robustness and accuracy of statistical analyses and exploit synergies of different computational methods, ranging from statistical learning to optimization and topological network analysis

    vrmlgen: An R Package for 3D Data Visualization on the Web

    Get PDF
    The 3-dimensional representation and inspection of complex data is a frequently used strategy in many data analysis domains. Existing data mining software often lacks functionality that would enable users to explore 3D data interactively, especially if one wishes to make dynamic graphical representations directly viewable on the web. In this paper we present vrmlgen, a software package for the statistical programming language R to create 3D data visualizations in web formats like the Virtual Reality Markup Language (VRML) and LiveGraphics3D. vrmlgen can be used to generate 3D charts and bar plots, scatter plots with density estimation contour surfaces, and visualizations of height maps, 3D object models and parametric functions. For greater flexibility, the user can also access low-level plotting methods through a unified interface and freely group different function calls together to create new higher-level plotting methods. Additionally, we present a web tool allowing users to visualize 3D data online and test some of vrmlgen's features without the need to install any software on their computer.

    vrmlgen: An R Package for 3D Data Visualization on the Web

    Get PDF
    The 3-dimensional representation and inspection of complex data is a frequently used strategy in many data analysis domains. Existing data mining software often lacks functionality that would enable users to explore 3D data interactively, especially if one wishes to make dynamic graphical representations directly viewable on the web. In this paper we present vrmlgen, a software package for the statistical programming language R to create 3D data visualizations in web formats like the Virtual Reality Markup Language (VRML) and LiveGraphics3D. vrmlgen can be used to generate 3D charts and bar plots, scatter plots with density estimation contour surfaces, and visualizations of height maps, 3D object models and parametric functions. For greater flexibility, the user can also access low-level plotting methods through a unified interface and freely group different function calls together to create new higher-level plotting methods. Additionally, we present a web tool allowing users to visualize 3D data online and test some of vrmlgen's features without the need to install any software on their computer

    Air Traffic Simulation Technology for High-Population Metroplexes

    Get PDF
    IAI's MetroSim optimizes air traffic by simulating departures, arrivals, and activity in air and onthe ground in busy metroplexes, where flights impact each other at a single airport and among traffic at nearby airports. MetroSim evolved out of several NASA SBIR/STTR Awards and has since been used by NASA for flight simulation analysis. MetroSim has also been integrated with FAA and DOT technology, has produced studies for the Port Authority of New York and New Jersey, and is under development to support the Nav

    Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials

    Get PDF
    There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions

    Piloted simulation study of an ILS approach of a twin-pusher business/commuter turboprop aircraft configuration

    Get PDF
    A six-degree-of-freedom nonlinear simulation of a twin-pusher, turboprop business/commuter aircraft configuration representative of the Cessna ATPTB (Advanced turboprop test bed) was developed for use in piloted studies with the Langley General Aviation Simulator. The math models developed are provided, simulation predictions are compared with with Cessna flight-test data for validation purposes, and results of a handling quality study during simulated ILS (instrument landing system) approaches and missed approaches are presented. Simulated flight trajectories, task performance measures, and pilot evaluations are presented for the ILS approach and missed-approach tasks conducted with the vehicle in the presence of moderate turbulence, varying horizontal winds and engine-out conditions. Six test subjects consisting of two research pilots, a Cessna test pilot, and three general aviation pilots participated in the study. This effort was undertaken in cooperation with the Cessna Aircraft Company

    Piloted Simulation of Various Synthetic Vision Systems Terrain Portrayal and Guidance Symbology Concepts for Low Altitude En-Route Scenario

    Get PDF
    In support of the NASA Aviation Safety Program's Synthetic Vision Systems Project, a series of piloted simulations were conducted to explore and quantify the relationship between candidate Terrain Portrayal Concepts and Guidance Symbology Concepts, specific to General Aviation. The experiment scenario was based on a low altitude en route flight in Instrument Metrological Conditions in the central mountains of Alaska. A total of 18 general aviation pilots, with three levels of pilot experience, evaluated a test matrix of four terrain portrayal concepts and six guidance symbology concepts. Quantitative measures included various pilot/aircraft performance data, flight technical errors and flight control inputs. The qualitative measures included pilot comments and pilot responses to the structured questionnaires such as perceived workload, subjective situation awareness, pilot preferences, and the rare event recognition. There were statistically significant effects found from guidance symbology concepts and terrain portrayal concepts but no significant interactions between them. Lower flight technical errors and increased situation awareness were achieved using Synthetic Vision Systems displays, as compared to the baseline Pitch/Roll Flight Director and Blue Sky Brown Ground combination. Overall, those guidance symbology concepts that have both path based guidance cue and tunnel display performed better than the other guidance concepts

    Toward enhanced data exchange capabilities for the oneM2M service platform.

    Get PDF

    Characterisation of exacerbation risk and exacerbator phenotypes in the POET-COPD trial

    Get PDF
    Background: Data examining the characteristics of patients with frequent exacerbations of chronic obstructive pulmonary disease (COPD) and associated hospitalisations and mortality are scarce. Methods: Post-hoc analysis of the Prevention Of Exacerbations with Tiotropium in COPD (POET-COPD) trial, targeting exacerbations as the primary endpoint. Patients were classified as non-, infrequent, and frequent exacerbators (0, 1, or >= 2 exacerbations during study treatment), irrespective of study treatment. A multivariate Cox regression model assessed the effect of covariates on time to first exacerbation. Results: In total, 7376 patients were included in the analysis: 63.5% non-exacerbators, 22.9% infrequent, 13.6% frequent exacerbators. Factors significantly associated with exacerbation risk were age, sex, body mass index, COPD duration and severity, smoking history, baseline inhaled corticosteroid use, and preceding antibiotic or systemic corticosteroid courses. Frequent exacerbators had greater severity and duration of COPD, received more pulmonary medication, and >= 2 systemic corticosteroid or antibiotic courses in the preceding year, and were more likely to be female and ex-smokers. The small proportion of frequent exacerbators (13.6%) accounted for 56.6% of exacerbation-related hospitalisations, which, overall, were associated with a three-fold increase in mortality. Conclusion: The frequent exacerbator phenotype was closely associated with exacerbation-related hospitalisations, and exacerbation-related hospitalisations were associated with poorer surviva

    Invasive versus noninvasive measurement of allergic and cholinergic airway responsiveness in mice

    Get PDF
    BACKGROUND: This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR) in intact, spontaneously breathing BALB/c mice. METHODS: Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF(50)), we determined early AR (EAR) to inhaled Aspergillus fumigatus antigens in conscious mice. These measurements were paralleled by invasive determination of pulmonary conductance (GL), dynamic compliance (Cdyn) and EF(50 )in another group of anesthetized, orotracheally intubated mice. RESULTS: With both methods, allergic mice, sensitized and boosted with A. fumigatus, elicited allergen-specific EAR to A. fumigatus (p < 0.05 versus controls). Dose-response studies to aerosolized methacholine (MCh) were performed in the same animals 48 h later, showing that allergic mice relative to controls were distinctly more responsive (p < 0.05) and revealed acute airway inflammation as evidenced from increased eosinophils and lymphocytes in bronchoalveolar lavage. CONCLUSION: We conclude that invasive and noninvasive pulmonary function tests are capable of detecting both allergen-specific and cholinergic AR in intact, allergic mice. The invasive determination of GL and Cdyn is superior in sensitivity, whereas the noninvasive EF(50 )method is particularly appropriate for quick and repeatable screening of respiratory function in large numbers of conscious mice
    • …
    corecore