
Towards enhanced data exchange capabilities
for the oneM2M Service Platform

Markus Glaab†,‡, Woldemar Fuhrmann†
†Faculty of Computer Science

University of Applied Sciences Darmstadt
Darmstadt, Germany

markus.glaab@h-da.de

Joachim Wietzke§
§Faculty of Mechanical Engineering and

Mechatronics
Karlsruhe University of Applied Sciences

Karlsruhe, Germany

Bogdan Ghita‡

‡Centre for Security, Communications and Network
Research, Plymouth University

Plymouth, United Kingdom

Abstract—The Machine-to-Machine Service Platform is being
standardized to enable the intercommunication of devices, which
is the basis for smart environments and Intelligent Transport
Systems applications. In such environments, adapting the data
exchange between devices and applications to the requirements of
the application is a critical step in ensuring the functionality and
reliability of the service. This paper employs test-cases to analyze
the data exchange of the oneM2M standard using an M2M-based
Automotive Service Delivery Platform. Following the analysis, it
proposes enhancements such as application-data-dependent
criteria for data notification in combination with aggregation of
different subscriptions to the same resource. Finally, the paper
discusses the proposed enhancements against the background of
M2M design considerations and improved privacy.

Keywords—Machine-to-Machine Communication; Service
Delivery Platform; Automotive Software Engineering

I. INTRODUCTION
The Machine-to-Machine (M2M) service platform

is being developed with the aim of overcoming
existing vertical silo solutions and of building a
standardized horizontal integration platform for
manifold machines (also known as devices or things)
and domains. This facilitates new use cases and
concepts which are often referred to as ’smart‘ or
’intelligent‘, such as smart home, smart grid, smart
cities, and intelligent vehicles as part of an Intelligent
Transportation System (ITS).

The European Telecommunication Standards
Institute (ETSI) M2M Service Architecture [1] was
the first step towards a universal M2M platform,
which already provided a good maturity level on
unified communication capabilities that are

1 http://www.onem2m.org

abstracted from specific technologies and protocols.
Currently, the oneM2M Global Initiative1 works on a
harmonized reference architecture, which integrates
previous work such as the aforementioned by ETSI,
as well as from other standardizing organizations, for
example, Open Mobile Alliance (OMA) and Broad
Band Forum (BBF). OneM2M released the first
version of their service platform specification in April
2015 [2]. Future releases are expected to feature full
semantic interoperability, which is necessary to
facilitate inter-vendor and inter-domain applications
without additional a-priori agreements [3].

From the software engineering perspective, M2M
use cases consist of distributed inter-connected
applications on top of the oneM2M service platform.
This means, prior to the data processing within an
application on a device or server, input data must be
acquired from other components such as
measurements from a large number of sensors, or
preprocessed content from other machines.
Therefore, having adequate data exchange
capabilities is a key factor for the oneM2M service
platform because it affects the service quality during
operation. In particular for devices connected via a
wireless access network, the constraints of the
respective transport networks have to be reflected.
Herein, the ability to tailor data acquisition to the
requirements of a particular use case directly impacts
on resulting bandwidth requirements, which may
conflict with the capabilities of the transport network.
This is a deciding factor as to whether a particular

functional split between applications and devices is
feasible, including the respective costs.

This paper focuses on the data exchange
capabilities of the current oneM2M specification and
introduces a series of enhancements to support
application-data-dependent notification criteria
including local aggregation. This can enable
significant bandwidth saving for many distributed
usage scenarios. The considerations arose in the
context of research on the applicability of M2M as the
enabler for future distributed automotive software
platforms [4]. The paper starts by introducing the
developed architecture of an M2M-based
Automotive Service Delivery Platform (ASDP) and
two exemplary use cases in Section two. Section three
presents the analysis of current data exchange
capabilities and proposes enhancements derived from
a typical automotive scenario. Section four details a
number of enhancements, their implementation and
its evaluation against the introduced automotive
scenario. Section five discusses the approach and
limitations within the wider context of oneM2M
standardization, and sketches future work. Finally,
Section six summarizes the contributions of this
study.

II. AN M2M-BASED AUTOMOTIVE SERVICE
DELIVERY PLATFORM: BACKGROUND,

ARCHITECTURE, AND USE CASES
This section provides the foundation for an M2M-

based ASDP. It starts with a short introduction to the
automotive software domain. Afterwards, the
architecture and two use case examples are described.
A. Background

The automotive domain is changing. More than
80% of the vehicular innovations are related to
electronics and software [5]. This is driven by several
factors: In-Vehicle Infotainment (IVI) systems must
compete with developments in the area of consumer
electronics (CE) products, in particular smartphones
and tablets. Besides, Advanced Driver Assistance
Systems (ADAS) aim to continuously increase the
traffic safety towards zero accident through
assistance and (semi-) autonomous driving
capabilities. Finally, within the superior vision of
ITS, vehicles are getting an integral part of our
connected world, aiming a further increase of traffic
efficiency, safety, and comfort of its users [6].

Hence, the expectation is that future vehicles will
be connected to the Internet and to neighboring peer

vehicles and infrastructure. In this regard, the
automotive domain is a prime example for the
concept of an Internet of Things (IoT) and its inherent
challenges. Car manufacturers or suppliers – in the
following referred to as Original Equipment
Manufacturers (OEM) – are now facing the task of
integrating applications and services from several
platforms and domains. These applications differ in
many ways, such as innovation- and lifecycles,
performance and real-time requirements, and
criticality [7]. However, the OEMs have to integrate
them to a homogeneous overall system that remains
functional over the complete lifetime of the car [8].
This requires new automotive software architectures
that are able to handle the heterogeneity of future
vehicular application landscape [5], [9].
B. Architecture

Connected vehicles raise new challenges for
current software development but they also enable
new ways to address them. One promising approach
for the software architecture of the next generation of
automotive applications is an ASDP [4], aiming the
increased utilization of connectivity together with
server infrastructure. Thereby the hub for the
integration of automotive applications is shifted from
the vehicle to a related OEM server. The offloading
of existing automotive applications and the cloud-
based implementation and integration of new OEM
and third party functionality typically face less
computational constraints than the traditional
approach of the integration on automotive embedded
systems. Further, an intermediary OEM server
between the vehicle and third party applications and
domains increases the mediation capabilities. Thus,
the new approach is advantageous for many
applications, in particular those that require in any
case connectivity [10].

Some manufacturers have already started to build
proprietary cloud solutions. However, in our ASDP
approach, we envisage the alternative of an open and
standardized architecture, not limited to one vendor
or the automotive domain. Further, a more extensive
network-integration of vehicles is intended, towards
an ‘Embedded Internet’ [11]. In this regard, current
developments within M2M architectures suit well the
approach of an ASDP, and M2M has been selected as
the underlying platform [10].

Following the concepts of the oneM2M service
platform [2], a vehicle could be an Application
Service Node (ASN) or a Middle Node (MN) that
integrates all vehicle-internal ASNs or Non-oneM2M

Device Nodes (NoDN). Within our ASDP, it has been
decided that the vehicle is an oneM2M-compliant
ASN, and the OEM server is an Infrastructure Node
(IN). The ASN is located inside the field domain and
it is connected to the infrastructure domain, using
wireless access networks.

The ASN and IN are divided into the application
layer and the Common Services Entity (CSE), with
the aspiration to encapsulate essential functions for
M2M Application Entities (AE). This reflects the
objective of a universal, horizontal integration
platform.

Fig. 1. Functional Architecture of an M2M-based Automotive Service
Delivery Platform

Fig. 1 illustrates the compound functional
architecture of an M2M-based ASDP with the
reference points: Mca (vertical interface for AE), Mcc
(horizontal between two CSEs). oneM2M-compliant
third party servers are connected by use of the Mcc’
interface with the OEM server, while other third party
platforms could be connected through adaptor-AEs.
For the sake of completeness, the possibility of a
direct connection between the vehicle and other
M2M-conformant IN, e.g., third party servers, via the
Mcc interface is hinted. Against the background of
mediation capabilities between a vehicle and third
party server, the ASDP concept describes the value of
an interposed OEM server. Hence the direct
connection to third party servers is currently not
favored.
C. Use cases

The ASDP concept with an OEM server as hub for
application integration facilitates many use cases,

currently associated with connected vehicles. To
evaluate the data exchange capabilities of oneM2M,
this section introduces two basic use cases, which are
widely accepted.

1) Extended Floating Car Data
With Extended Floating Car Data (XFCD) [12],

vehicles are used as driving traffic information
sensors. They periodically report at a minimum their
current location, together with the timestamp to the
OEM server. The trigger for these reports may be
time-related, distance-related, or a combination of
both. The OEM server, respectively a third party
traffic management center, aggregates and analyses
the data and traffic models and can then detect traffic
jams and calculate average trip times. This
information can be used by navigation systems that
are able to consider the current traffic situation.
XFCD includes the transmission of additional sensor
data to the OEM server, if it detects critical situations
through the vehicular sensors. Triggers may vary
from outside temperature or rain intensity to driving
dynamic control interventions, such as an Electronic
Stability Control (ESP) intervention. The provision of
these measurements, together with the position and
speed, enables advanced inference regarding the
momentary traffic safety conditions on a certain road
section.

2) Vehicle Maintenance / Fleet Management
Modern vehicles have variable service intervals,

depending on their usage, which is monitored over
time to estimate when thresholds are exceeded and
service has become necessary. Additionally, various
vehicular sensors and check routines continuously
monitor component status and individual component
failures. These are currently only locally stored using
a fault recorder and manually readout at the garage.
Connected vehicles enable use cases, where relevant
data can be submitted to the OEM server periodically,
or upon error occurrence. The gathered data may be
subsequently used to initiate a separate business
process of contacting the vehicle owner, discuss
necessary service amounts, arrange workshop dates,
or, in a wider scope, it might be used for quality
management and product improvements. Remaining
fuel range might also be monitored, to trigger other
use cases that may propose a cheap gas station on the
route.

III. ANALYSIS OF CURRENT DATA EXCHANGE
CAPABILITIES OF THE ONEM2M SERVICE PLATFORM

The following section provides an overview of the
current capabilities for data exchange, based on a
selected ASDP scenario, and then follows up with a
discussion on recommended enhancements.
A. Principles

At the core of oneM2M interworking between AEs
and Nodes is a generic Resource Tree (RT), located
inside each CSE. In addition to the structured storage
of application data (such as sensor measurement), the
RT facilitates essential functions, such as,
registration, discovery, deregistration,
announcement, grouping, subscription and
notification management. From an implementation
perspective, the RT is mapped to Uniform Resource
Identifiers (URI) and exposed through the
standardized interfaces (Mca, Mcc, Mcc’), following
the RESTful architectural style. Accordingly, the
resources are manipulated using Create, Retrieve,
Update, Delete plus Notify methods (CRUD+N) [2],
which are mapped to the applied application layer
protocols, most likely Hypertext Transfer Protocol
(HTTP), Constrained Application Protocol
(CoAP) [13], or Message Queue Telemetry Transport
(MQTT)2.

According to the middleware approach of
oneM2M, AEs exchange application data using the
capabilities of the CSE(s), offered through the
standardized interfaces. At first, the AE stores
application data in the RT structure of their local or a
remote CSE. For this it uses a container resource,
which can contain, besides others, one or many
contentInstances, according to specifiable memory
constraints, such as maxNrOfInstances, maxByteSize,
and maxInstanceAge. The actual application data is
then stored within the attribute content of a
contentInstance. The stored application data can be
received from other AEs in various ways. For
instance, other AEs can Retrieve this data on demand.
Optionally, to Retrieve certain resources or subsets,
conditions could be defined that are related, e.g., to
time, size, state, label, number of matches, or content
type of the resource.

In addition, oneM2M provides a subscribe/notify
mechanism, where AEs can subscribe to resource
changes. Similar to the Retrieve method, constraints
can also be defined for the Notification, by time, state,

2 http://www.mqtt.org

size, or status. Furthermore, the subscribe/notify
mechanism can include communication-related
constraints, from batch notification, rate limit, or
priority, to comprehensive notification schedule
policies. These capabilities can be used to improve
the ‘network friendliness’ of M2M traffic.

Since the subscribe/notify data exchange
mechanism provides significant time and space
decoupling of AEs, it is particularly suitable for
distributed M2M use cases across different devices,
vendors, and domains and is therefore selected for the
ASDP use cases.
B. Analysis

In the following, a simplified scenario derived
from the two use cases with one vehicle and one OEM
server Node, and three AEs (see Fig. 2) is used for
analysis of current data exchange capabilities of
oneM2M. Since vehicular sensor data is the
foundation for many automotive-related applications,
it is made available to all AEs within the ASDP.
Accordingly, an AE1 ‘Vehicle Data Provider’ was
introduced to exemplarily make input data, such as
position (latitude, longitude, heading) speed, and ESP
control intervention info available in the local CSE
RT through appropriately structured container
resources. The AE1 proprietarily obtains the vehicle
data from an external source, such as a Controller
Area Network fieldbus (CAN-bus), see step 1.
Position data is usually determined using an internal
Global Positioning System (GPS) receiver, connected
to the CAN-bus with a typical update rate of 1 to
4 Hz, while other sensor values might be available at
a much higher rate. In step 2 the AE1 pushes the data
– unaware of requirements of (future) AEs within the
ASDP – with undiminished resolution to the
container VehicleData, where it is stored within the
attribute content of a contentInstance resource. The
AE1 additionally can specify a contentInfo, which is a
composite attribute of an Internet Media Type and
encoding information, e.g. base64 encoded string.
The CSE further expands the contentInstance with the

typical resource attributes, such as contentSize and
creationTime.

The scenario assumes the existence of two AEs at
the IN: AE2 ‘Extended Floating Car Data’, and an AE3
‘Vehicle Maintenance’, which implement the
respective application logic. Both AEs in this scenario
subscribe to the VehicleData of the ASN with
appropriate notification criteria. According to the
existing oneM2M capabilities, time-related schedules
are defined: AE3 configures the scheduleElement, for
example, to receive notifications with the latest
representation of the content resource at maximum
every 5 seconds, AE2 configures 10 seconds. These
subscriptions are sent through the local IN-CSE,
where they are both re-targeted to the target ASN-
CSE. For the opposite notifications, local callbacks
(within the IN-CSE) are created to route them to the
AEs. (These steps are by-passed in Fig. 2). In the
given example, the criteria(AE2) according to its
configuration selects two contentInstance resources
out of six, hence the ASN-CSE performs two Notify
operations that contain the latest representation of the
resource including the VehicleData content (Step 2a).
Similarly, the criteria(AE3) selects three
contentInstance resources. Thus, the ASN-CSE
performs three notifications that contain the latest

representation of the resource (Step 2b). Both are in
each case re-targeted at the IN-CSE to their
originators AE2 (Step 3a) and AE3 (Step 3b).

The example reveals two drawbacks of current
oneM2M data exchange capabilities:

1) No aggregation of subscriptions
Subscriptions are not aggregated or harmonized at

the local or transit CSE(s). This potentially leads to
redundant data transmissions as the example,
illustrated in Fig. 2, shows: Here, five notification
messages with the respective latest representation of
the VehicleData container are transmitted from the
vehicle to the OEM server, whereas only three of
these represent different contentInstances – two are
redundant.

Fig. 2 An automotive scenario with current M2M data exchange capabilities

2) No application-data-dependent criteria for
notification

By design-choice of the current oneM2M releases,
the contentInfo attribute is not used at CSE level.
Accordingly, the application data (stored within the
attribute content of the contentInstance resource)
becomes opaque. This has a significant impact on the
available notification criteria for the subscribe/notify
mechanism, i.e. the eventNotificationCriteria
conditions. These can currently not refer to the
content, but only can refer to other attributes of the
contentInstance resource. For example,
eventNotificationCriteria can relate to the
creationTime of the contentInstance (with
createdBefore, createdAfter conditions), or to the
contentSize (with sizeAbove, sizeBelow conditions).
Application-data-dependent notification criteria that
are derived from the real use case requirements,
tailoring the transmitted data to the actual needs,
cannot be applied.

In the absence of such criteria, it has to be assumed
that the inaccurately selected data transmitted needs
to be further filtered at the receiving AE. Hence, it is
very likely that the network bandwidth consumption
of the distributed M2M applications is above the
effective requirements of the use case.

Finally, the opaque content prevents the
specification and detection of application-data-
dependent events for notification. This, for instance,
allows a short ESP intervention, which is only
reflected within the opaque structure of a related
content, to be missed, unless this value is provided
within a separate container resource (on which an ‘on
change’ subscription is sufficient). However, the
detection of an application-data-dependent threshold
exceedance is still not possible.

IV. PROPOSED ENHANCEMENTS FOR DATA
EXCHANGE CAPABILITIES OF THE ONEM2M SERVICE

PLATFORM
This section describes the proposed enhancements

for data exchange capabilities of oneM2M. It starts
with an overview of its objectives, used to derive a set
of requirements followed by a description of a
potential implementation. The discussion concludes
with an evaluation on the basis of the introduced
scenario.
A. Objectives and requirements

For the enhancements of oneM2M standards, we
propose to include the following capabilities:

1) Subscription aggregation
• Different subscriptions to the same remote

resource shall be aggregated at the local CSE.

• Different subscriptions to the same remote
resource should be aggregated at transit
CSE(s).

2) Enhanced notification
• Applications shall provide their application

data in a standardized way that enables
application-data-dependent notification criteria
for subscribe/notify mechanism.

• A comprehensive language shall be provided to
enable the standardized description of gainful
application-data-dependent notification criteria
including basic arithmetic and logical
operations on common data types.

The left column of Table 1 names some
advantageous automotive notification criteria with
respect to the introduced use cases.

TABLE I. EXAMPLES OF AUTOMOTIVE APPLICATION-DATA-DEPENDENT
NOTIFICATION CRITERIA AND THEIR EPL STATEMENT REPRESENTATION.

Description EPL Statement
Notification, if remaining fuel
range is smaller than 100 km.

SELECT * FROM VehicleData
WHERE fuelRange < 100

Notification, if heavy rain is
detected.

SELECT * FROM
VehicleEnvironmentData
WHERE rainSensor > 4

Notification, if there is a risk of
freezing rain.

SELECT * FROM
VehicleEnvironmentData
WHERE temperature < 3 AND
rainSensor > 0

Notification, if there is a electronic
stability control intervention.

SELECT * FROM VehicleData
WHERE ESP=true

Notification, if a strong
deceleration of greater than 6m/s^2
is detected (calculated on speed
delta [km/h] and time delta [s]).

SELECT * FROM
pattern[a=Position ->
b=Position((b.speed -
a.speed)/((b.timestamp-
a.timestamp)*3.6) < -6)]

B. Implementation
The applicability of the proposed enhancements

was validated by means of a prototype
implementation. The eclipse OM2M project3 was
used for basic functionality of the oneM2M service
platform. Comprehensive capabilities for the
continuous analysis of data streams are available
within the field of Complex Event Processing (CEP)
[14]. In contrast to other approaches of CEP for
M2M, such as [15], which focus on the analysis of
machine-generated data at a server, we use CEP
mechanisms at each M2M node to analyze (and filter)
the data at its source and tailor the data transmitted.
We have integrated the open-source Java Esper CEP4
component into OM2M to add enhanced data stream
processing capabilities to the CSE layer. Fig. 3
illustrates the prototype and the interaction of

3 http://www.eclipse.org/om2m/

enhancements with existing CSE capabilities within
the given scenario.

The starting point is the creation of a new
contentInstance VehicleDataInstance1 within the
container VehicleData (step 1). If contentInfo is set
to ‘application/xml:2’ (which indicates a base64
encoded string of an XML document), this encoding
information is forwarded to a content decoder (step
1.1a) together with the related content (step 1.1b) and
then, in step 1.2, passed to the Esper event adaptor.
The XML document can now be verified against the
included link to at least one XML Schema Definition
(XSD), in this example
‘http://oem.com/xml/VehicleData’, which is
therefore downloaded. If the Esper event adaptor
retrieves an XSD file for the first time, this is passed
to the Esper CEP Engine to register an associated
event type (step 1.3). Afterwards, in step 1.4 the
content XML is sent to Esper as a new event.

4 http://www.espertech.com/esper/

Fig. 3 Implementation of application-data-dependent notification criteria within the CSE

The second part of the enhancements refers to the
subscription Create/Update (step 2). Prior to adding
the subscription to the remote container resource, it
is aggregated with existing ones to the same resource
at the local CSE, as illustrated in Fig. 4. For the
description of application-data-dependent
eventNotificationCriteria, the Esper Event
Processing Language (EPL) is used, whose semantic
and syntax is close to the Structured Query Language
(SQL). The EPL statements to trigger the notification
are enclosed in the attribute condition tag, referred to
the content. Fig. 3 shows the aggregated application-
data-dependent EPL statement that facilitates both,
AE2 and AE3 criteria. The overall
eventNotificationCriteria consist of the application-
data-dependent part criteria1(AE2,AE3) and may
have a second part criteria2(AE2,AE3), related to the
existing notification criteria on other contentInstance
attributes. The EPL statement is extracted by the
Esper Statement Adaptor and added to the Esper CEP
Engine (steps 2.2 and 2.3).

If a new contentInstance is created and a related
subscription that includes an EPL statement exists,
the content is forwarded to the Esper CEP Engine
(steps 1.1a, 1.1b, 1.2). If the EPL statement (criteria1)

is fulfilled, the continuation of notification criteria
evaluation (criteria2) is triggered (step 3.1). If these
are also fulfilled, a Notify is sent according to the
subscription (step 3.2).

The enhancements were implemented aiming to
have a minimal modification on the reference points.
But, to provide the enhancements to the AEs and
CSEs, the reference points had to be enhanced, which
is indicated through the adapted naming *-E.
Nevertheless, the application-data-dependent
notification criteria remain optional and AEs can still
provide opaque content that is transferred according
to existing capabilities.
C. Evaluation

Fig. 5 illustrates how the proposed enhancements
positively affect the scenario of Fig. 2. It is assumed
that initially the AE3 creates a subscription with
criteria(AE3) on the VehicleData container.
According to the new capabilities, a criteria derived
from the use case ‘Extended Floating Car Data’ is
used instead of an unspecific time constraint. In this
example, this criteria is the interference of the ESP.
Afterwards, the AE2 creates a subscription also to the
VehicleData with the criteria(AE2) that requests

Fig. 4 Flowchart for aggregation of subscription constraints at local CSE.

notifications, if the remaining fuel range is below 100
km. At the time of the second subscription Create, the
local CSE detects that a subscription to the same
remote resource already exists and aggregates the two
criteria (denoted criteria(AE2,AE3)). Fig. 3 shows the
resulting aggregated EPL statement. Other EPL
examples are listed at the right column of Table 1.

The example illustrated in Fig. 5 assumes that the
ESP intervention is true at the first and the last
contentInstance. It further assumes that the remaining
fuel range at the last contentInstance is first time
below 100. This leads to a total of two notifications,
which are further distributed at the IN-CSE. The AE2
receives two notifications (including respective latest
contentInstance), the AE3 receives one notification.

V. DISCUSSION
The development of an M2M service platform is a

trade-off between a too application-specific or
domain-specific platform (which is just another silo
solution) and a too common platform with too little
capabilities, which might be inefficient and again
causes silos – the applications on top. In this regard,
any (additional) functionality of the CSE could be
controversial.

The existing data exchange capabilities of
oneM2M might be sufficient for scenarios, where
limited sensors provide their measurements at low
frequency (hence have low bandwidth consumption).
They are also appropriate, when the whole range of
data should be acquired, for example, in the context
of big data, where data analysis is performed later
offline.

Although not limited to, our proposed
enhancements are particularly beneficial for domains
such as automotive, where sensors or nodes possibly
provide a high amount of data, of which only certain
subsets are required for a use case. In such a scenario,
it is neither feasible nor reasonable to transfer all
sensor measurements with respect to the large
number of vehicles and resulting bandwidth
requirements to wireless access networks. The a
priori clipping of sensor data available within the
oneM2M service platform is not a suitable solution,
since the car manufacturer hardly can estimate future
use cases and related data requirements. Additionally,
they could possibly come from different vendors and
domains. Here, as indicated, application-data-
dependent notification criteria together with local
aggregation of subscriptions enable significant

Fig. 5 An automotive scenario with enhanced M2M data exchange capabilities

bandwidth savings for many use-cases and may make
certain functional splits between distributed
applications possible at all.

The capability to detect application-data-
dependent events at CSE level supports oneM2M use
cases, related for example to distribute control system
applications.

The proposed enhancements of application-data-
dependent notification criteria might also improve
privacy. On one hand, the capability to better tailor
the data acquisition to the actual use case
requirements can prevent applications from receiving
more data than necessary, only due to the lack of
appropriate notification criteria capabilities within
the CSE. On the other hand, it could be assumed that
a binary decision whether an AE is or is not allowed
to perform a certain CRUD+N operation on a
resource will no longer be sufficient. In our opinion,
applications may require more detailed access
specifications. In this regard, transparent content
structures at CSE level could facilitate future
oneM2M enhancements towards application-data-
dependent accessControlPolicies, similar to the
proposed enhancements for notification criteria. For
example, enhanced access policies could prohibit
applications to:

• Create subscriptions with notification criteria
that analyze the vehicle speed.

• Subscribe to position updates of the vehicle
with an update interval smaller than every 15
minutes.

• Use the most accurate vehicle position data
available.

This, in turn, could enable further differentiation
between applications and groups, such as OEM
applications, third party applications, safety-related
applications, or consumer applications. If users are
empowered to configure such enhanced access
policies for certain applications, for instance through
mechanisms of the ASDP, this could finally be one
aspect to better address the ‘right to privacy’ or
improve ‘informational self-determination’.

Our enhancements at this time only use a subset of
the overall CEP possibilities. Similarly to the existing
oneM2M capabilities, so far the enhanced
notification criteria are also limited to the respective
resource, where the subscription is placed. This
means that, criteria across several containers are
currently not supported. Furthermore, the notification

content is currently not configurable, which offers
possibilities for future enhancements. In this context,
ongoing oneM2M standardization activities towards
full semantic interoperability are beneficial, too;
virtual resources, dynamically created according to
the requirements of an AE through semantic mash-up,
could be one solution to the aforementioned
limitations.

VI. SUMMARY
The oneM2M service platform is currently

developed as the standardized horizontal enabling
platform for smart homes, smart cities, and intelligent
transportation systems, all implemented as
distributed inter-connected applications. In this
context, data exchange capabilities represent a key
functionality with respect to network efficiency and
possible functional splits between applications and
nodes.

This paper presented an analysis of data exchange
capabilities of current oneM2M service platform
specification by means of vehicular use cases, which
are implemented with an M2M-based Automotive
Service Delivery Platform. We found that the absence
of local aggregation of different subscriptions to the
same resource can cause redundant data
transmissions. Besides, the opaque handling of
application data at the Common Service Entity
prevents the definition of application-data-dependent
notification criteria for the subscribe/notify
mechanism. This reduces the capabilities to tailor the
data acquisition to the actual requirements of the use
case. Furthermore, the detection of application-data-
dependent events, such as a threshold exceedance,
cannot be used as notification trigger.

Our proposed enhancements use existing
oneM2M attributes, available for technical
interworking of different oneM2M applications, to
decode the opaque application data at the Common
Service Entity level. The introduction of a Complex
Event Processing engine facilitates the specification
of complex statements, which enable application-
data-dependent criteria for notifications including the
detection of events. This enables significant
bandwidth savings for many oneM2M usage
scenarios, not limited to the automotive domain.

VII. REFERENCES
[1] ETSI, “Machine-to-Machine communications (M2M); Functional

architecture,” TS 102 690, V.2.1.1, Oct. 2013.
[2] oneM2M, “Functional Architecture,” TS-0001, V.1.6.1, Jan. 2015.

[3] oneM2M, “Study of Abstraction and Semantics Enablements,” TR-0007,
V.2.5.1, Jul. 2015.

[4] M. Glaab, W. Fuhrmann, J. Wietzke, and B. Ghita, “A M2M-based
Automotive Service Delivery Platform for Distributed Vehicular
Applications,” in Proc. 10th Int. Network Conference, Plymouth, UK,
2014, pp. 35–45.

[5] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann, “Engineering
Automotive Software,” Proc. of the IEEE, vol. 95, no. 2, pp. 356–373,
Feb. 2007.

[6] T. Kosch, I. Kulp, M. Bechler, M. Strassberger, B. Weyl, and R.
Lasowski, “Communication architecture for cooperative systems in
Europe,” IEEE Commun. Mag., vol. 47, no. 5, pp. 116–125, May 2009.

[7] M. Broy, “Challenges in automotive software engineering,” in Proc. 28th
Int. Conf. Software Engineering, 2006, pp. 33–42.

[8] S. Bauer, “Das vernetzte Fahrzeug – Herausforderungen für die IT,”
Informatik Spektrum, vol. 34, no. 1, pp. 38–41, Dec. 2010.

[9] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software
Engineering for Automotive Systems: A Roadmap,” in Proc. 2007 Future
of Software Engineering, pp. 55–71, May 2007.

[10] M. Glaab, W. Fuhrmann, and J. Wietzke, “Entscheidungskriterien für die
Verteilung zukünftiger automotiver Anwendungen im Kontext vernetzter
Fahrzeuge,” in Proc. Mobilkommunikation 2011 - Technologien und
Anwendungen - 16. ITG-Fachtagung, Osnabrück, Germany, 2011, pp.
149–154.

[11] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson, “M2M:
From Mobile to Embedded Internet,” IEEE Commun. Mag., vol. 49, no.
4, pp. 36–43, Apr. 2011.

[12] W. Huber, M. Lädke, and R. Ogger, “Extended floating-car data for the
acquisition of traffic information,” in Proc. 6th World Congr. Intelligent
Transportation Systems, pp.1-9, 1999.

[13] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An Application
Protocol for Billions of Tiny Internet Nodes,” IEEE Internet Comput., vol.
16, no. 2, pp. 62–67, 2012.

[14] D. C. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, 5th ed. Boston, USA:
Addison-Wesley Professional, 2002.

[15] R. Bruns, J. Dunkel, H. Masbruch, and S. Stipkovic, “Intelligent M2M:
Complex event processing for machine-to-machine communication,”
Expert Systems with Applications, vol. 42, no. 3, pp. 1235–1246, Feb.
2015.

