241 research outputs found

    The Dimer Model for k-phase Organic Superconductors

    Full text link
    We prove that the upper electronic bands of k-phase BEDT-TTF salts are adequately modeled by an half-filled tight-binding lattice with one site per cell. The band parameters are derived from recent ab-initio calculations, getting a very simple but extremely accurate one-electron picture. This picture allows us to solve the BCS gap equation adopting a real-space pairing potential. Comparison of the calculated superconducting properties with the experimental data points to isotropic s_0-pairing. Residual many-body or phonon-mediated interactions offer a plausible explanation of the large variety of physical properties observed in k-phase BEDT-TTF salts.Comment: 8 pages, 6 PostScript figures, uses RevTe

    Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics

    Get PDF
    This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, we show that the refined calculi Ldm^m_nL derive theorems within a restricted class of (forestlike) sequents, allowing us to provide proof-search algorithms that decide single-agent STIT logics. We prove that the proof-search algorithms are correct and terminate

    Phonons and structures of tetracene polymorphs at low temperature and high pressure

    Full text link
    Crystals of tetracene have been studied by means of lattice phonon Raman spectroscopy as a function of temperature and pressure. Two different phases (polymorphs I and II) have been obtained, depending on sample preparation and history. Polymorph I is the most frequently grown phase, stable at ambient conditions. A pressure induced phase transition, observed above 1 GPa, leads to polymorph II, which is also obtained at temperatures below 140 K. Polymorph II can also be maintained at ambient conditions. We have calculated the crystallographic structures and phonon frequencies as a function of temperature, starting from the configurations of the energy minima found by exploring the potential energy surface of crystalline tetracene. The spectra calculated for the first and second deepest minima match satisfactorily those measured for polymorphs I and II, respectively. All published x-ray structures, once assigned to the appropriate polymorph, are also reproduced.Comment: 8 pages, 5 figures, RevTeX4, update after referees report

    Reference Force Field and CDW Amplitude of Mixed-Valence Halogen-Bridged Pt Complexes

    Full text link
    The spectroscopic effects of electron-phonon coupling in mixed-valence chlorine-bridged Pt chains complexes are investigated through a parallel infrared and Raman study of three compounds with decreasing Pt-Pt distance along the chain. The e-ph interaction is analyzed in terms of the Herzberg-Teller coupling scheme. We take into account the quadratic term and define a precise reference state. The force field relevant to this state is constructed, whereas the electronic structure is analyzed in terms of a simple phenomenological model, singling out a trimeric unit along the chain. In this way we are able to account for all the available optical data of the three compounds, and to estimate the relevant microscopic parameters, such as the e-ph coupling constants and the CDW amplitude.Comment: 10 pages, compressed postscript, 6 Tables and 5 Figures also in a compressed ps.Z file. Revision is in the submission format only (postscript instead of tex

    Direct evidence of overdamped Peierls-coupled modes in TTF-CA temperature-induced phase transition

    Full text link
    In this paper we elucidate the optical response resulting from the interplay of charge distribution (ionicity) and Peierls instability (dimerization) in the neutral-ionic, ferroelectric phase transition of tetrathiafulvalene-chloranil (TTF-CA), a mixed-stack quasi-one-dimensional charge-transfer crystal. We present far-infrared reflectivity measurements down to 5 cm-1 as a function of temperature above the phase transition (300 - 82 K). The coupling between electrons and lattice phonons in the pre-transitional regime is analyzed on the basis of phonon eigenvectors and polarizability calculations of the one-dimensional Peierls-Hubbard model. We find a multi-phonon Peierls coupling, but on approaching the transition the spectral weight and the coupling shift progressively towards the phonons at lower frequencies, resulting in a soft-mode behavior only for the lowest frequency phonon near the transition temperature. Moreover, in the proximity of the phase transition, the lowest-frequency phonon becomes overdamped, due to anharmonicity induced by its coupling to electrons. The implications of these findings for the neutral-ionic transition mechanism is shortly discussed.Comment: 11 pages, 13 figure

    Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition

    Full text link
    We present exact diagonalization results on a modified Peierls-Hubbard model for the neutral-ionic phase transition. The ground state potential energy surface and the infrared intensity of the Peierls mode point to a strong, non-linear electron-phonon coupling, with effects that are dominated by the proximity to the electronic instability rather than by electronic correlations. The huge infrared intensity of the Peierls mode at the ferroelectric transition is related to the temperature dependence of the dielectric constant of mixed-stack organic crystals.Comment: 4 pages, 4 figure

    Neutral-ionic phase transition : a thorough ab-initio study of TTF-CA

    Full text link
    The prototype compound for the neutral-ionic phase transition, namely TTF-CA, is theoretically investigated by first-principles density functional theory calculations. The study is based on three neutron diffraction structures collected at 40, 90 and 300 K (Le Cointe et al., Phys. Rev. B 51, 3374 (1995)). By means of a topological analysis of the total charge densities, we provide a very precise picture of intra and inter-chain interactions. Moreover, our calculations reveal that the thermal lattice contraction reduces the indirect band gap of this organic semi-conductor in the neutral phase, and nearly closes it in the vicinity of the transition temperature. A possible mechanism of the neutral-ionic phase transition is discussed. The charge transfer from TTF to CA is also derived by using three different technics.Comment: 11 pages, 9 figures, 7 table

    Bandwidth-controlled Mott transition in κ−(BEDT−TTF)2Cu[N(CN)2]BrxCl1−x\kappa-(BEDT-TTF)_2 Cu [N(CN)_2] Br_x Cl_{1-x} I. Optical studies of localized charge excitations

    Full text link
    Infrared reflection measurements of the half-filled two-dimensional organic conductors κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_{2}]Brx_{x}Cl1−x_{1-x} were performed as a function of temperature (5K<T<3005 {\rm K}<T<300 K) and Br-substitution (x=0x=0%, 40%, 73%, 85%, and 90%) in order to study the metal-insulator transition. We can distinguish absorption processes due to itinerant and localized charge carriers. The broad mid-infrared absorption has two contributions: transitions between the two Hubbard bands and intradimer excitations from the charges localized on the (BEDT-TTF)2_2 dimer. Since the latter couple to intramolecular vibrations of BEDT-TTF, the analysis of both electronic and vibrational features provides a tool to disentangle these contributions and to follow their temperature and electronic-correlations dependence. Calculations based on the cluster model support our interpretation.Comment: 12 pages, 12 figure

    Effect of Benzoic Acids on Barite and Calcite Precipitation

    Get PDF
    The effect of various benzoic acids on the precipitation of barite (BaSO4) and calcite (CaCO3) was investigated. The acids varied in the number of carboxylate groups, from dibenzoic acids (phthalic, isophthalic, and terephthalic) through to the hexabenzoic acid (mellitic acid). It was found that the stereochemistry of the dibenzoic acids was important, as was the pH of the solution (trimesic acid was used as a test case and showed that greatest inhibition was achieved with all carboxylate groups deprotonated). Interestingly, for both the calcite and barite systems, mellitic acid was found to be both a potent inhibitor and a significant crystal growth modifier. In the case of barite, the presence of mellitic acid produced nanoparticles that agglomerated. The nanoparticles were found to be 20 nm in size from X-ray diffraction (XRD) line width analysis and 20-50 nm from transmission electron microscopy (TEM). Humic acid was also tested and found to form bundled fibers of barium sulfate
    • …
    corecore