8 research outputs found

    Symmetry and Control of Spin-Scattering Processes in Two-Dimensional Transition Metal Dichalcogenides

    Get PDF
    Transition metal dichalcogenides (TMDs) combine interesting optical and spintronic properties in an atomically-thin material, where the light polarization can be used to control the spin and valley degrees-of-freedom for the development of novel opto-spintronic devices. These promising properties emerge due to their large spin-orbit coupling in combination with their crystal symmetries. Here, we provide simple symmetry arguments in a group-theory approach to unveil the symmetry-allowed spin scattering mechanisms, and indicate how one can use these concepts towards an external control of the spin lifetime. We perform this analysis for both monolayer (inversion asymmetric) and bilayer (inversion symmetric) crystals, indicating the different mechanisms that play a role in these systems. We show that, in monolayer TMDs, electrons and holes transform fundamentally differently -- leading to distinct spin-scattering processes. We find that one of the electronic states in the conduction band is partially protected by time-reversal symmetry, indicating a longer spin lifetime for that state. In bilayer and bulk TMDs, a hidden spin-polarization can exist within each layer despite the presence of global inversion symmetry. We show that this feature enables control of the interlayer spin-flipping scattering processes via an out-of-plane electric field, providing a mechanism for electrical control of the spin lifetime.Comment: 9 pages, 3 figure

    Identification and tunable optical coherent control of transition-metal spins in silicon carbide

    Get PDF
    Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration in communication technology is hindered by the fact that their optical transitions lie outside telecom wavelength bands. Several transition-metal impurities in silicon carbide do emit at and near telecom wavelengths, but knowledge about their spin and optical properties is incomplete. We present all-optical identification and coherent control of molybdenum-impurity spins in silicon carbide with transitions at near-infrared wavelengths. Our results identify spin S=1/2S=1/2 for both the electronic ground and excited state, with highly anisotropic spin properties that we apply for implementing optical control of ground-state spin coherence. Our results show optical lifetimes of \sim60 ns and inhomogeneous spin dephasing times of \sim0.3 μ\mus, establishing relevance for quantum spin-photon interfacing.Comment: Updated version with minor correction, full Supplementary Information include

    A quantum coherent spin in a two-dimensional material at room temperature

    Full text link
    Quantum networks and sensing require solid-state spin-photon interfaces that combine single-photon generation and long-lived spin coherence with scalable device integration, ideally at ambient conditions. Despite rapid progress reported across several candidate systems, those possessing quantum coherent single spins at room temperature remain extremely rare. Here, we report quantum coherent control under ambient conditions of a single-photon emitting defect spin in a a two-dimensional material, hexagonal boron nitride. We identify that the carbon-related defect has a spin-triplet electronic ground-state manifold. We demonstrate that the spin coherence is governed predominantly by coupling to only a few proximal nuclei and is prolonged by decoupling protocols. Our results allow for a room-temperature spin qubit coupled to a multi-qubit quantum register or quantum sensor with nanoscale sample proximity

    Electromagnetically induced transparency in inhomogeneously broadened divacancy defect ensembles in SiC

    No full text
    Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins. In its archetypical form, mainly explored with atomic media, it uses a (near-)homogeneous ensemble of three-level systems, in which two low-energy spin-1/2 levels are coupled to a common optically excited state. We investigate the implementation of EIT with c-axis divacancy color centers in silicon carbide. While this material has attractive properties for quantum device technologies with near-IR optics, implementing EIT is complicated by the inhomogeneous broadening of the optical transitionsthroughout the ensemble and the presence of multiple ground-state levels. These may lead to darkening of the ensemble upon resonant optical excitation. Here, we show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry. Comparison of our experimental results with a model based on the Lindblad equations indicates that we can create coherences between different sets of two levels all-optically in these systems, with potential impact for RF-free quantum sensing applications. Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for awide array of defects in semiconductors

    Electromagnetically induced transparency in inhomogeneously broadened divacancy defect ensembles in SiC

    Get PDF
    Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins. In its archetypical form, mainly explored with atomic media, it uses a (near-)homogeneous ensemble of three-level systems, in which two low-energy spin-1/2 levels are coupled to a common optically excited state. We investigate the implementation of EIT with c-axis divacancy color centers in silicon carbide. While this material has attractive properties for quantum device technologies with near-IR optics, implementing EIT is complicated by the inhomogeneous broadening of the optical transitions throughout the ensemble and the presence of multiple ground-state levels. These may lead to darkening of the ensemble upon resonant optical excitation. Here, we show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry. Comparison of our experimental results with a model based on the Lindblad equations indicates that we can create coherences between different sets of two levels all-optically in these systems, with potential impact for RF-free quantum sensing applications. Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.Comment: 9 pages, 5 figure

    Quantum communication networks with defects in silicon carbide

    No full text
    Quantum communication promises unprecedented communication capabilities enabled by the transmission of quantum states of light. However, current implementations face severe limitations in communication distance due to photon loss. Silicon carbide (SiC) defects have emerged as a promising quantum device platform, offering strong optical transitions, long spin coherence lifetimes and the opportunity for integration with semiconductor devices. Some defects with optical transitions in the telecom range have been identified, allowing to interface with fiber networks without the need for wavelength conversion. These unique properties make SiC an attractive platform for the implementation of quantum nodes for quantum communication networks. We provide an overview of the most prominent defects in SiC and their implementation in spin-photon interfaces. Furthermore, we model a memory-enhanced quantum communication protocol in order to extract the parameters required to surpass a direct point-to-point link performance. Based on these insights, we summarize the key steps required towards the deployment of SiC devices in large-scale quantum communication networks
    corecore