3,055 research outputs found

    On the relation between p-adic and ordinary strings

    Get PDF
    The amplitudes for the tree-level scattering of the open string tachyons, generalised to the field of p-adic numbers, define the p-adic string theory. There is empirical evidence of its relation to the ordinary string theory in the p_to_1 limit. We revisit this limit from a worldsheet perspective and argue that it is naturally thought of as a continuum limit in the sense of the renormalisation group.Comment: 13 pages harvmac (b), 2 eps figures; v2: revtex, shortened, published versio

    Growing distributed networks with arbitrary degree distributions

    Full text link
    We consider distributed networks, such as peer-to-peer networks, whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. We also describe a mechanism based on biased random walks by which appropriate rules could be implemented in practice. As an example application, we describe and simulate the construction of a peer-to-peer network optimized to minimize search times and bandwidth requirements.Comment: 10 pages, 2 figure

    Bicomponents and the robustness of networks to failure

    Full text link
    A common definition of a robust connection between two nodes in a network such as a communication network is that there should be at least two independent paths connecting them, so that the failure of no single node in the network causes them to become disconnected. This definition leads us naturally to consider bicomponents, subnetworks in which every node has a robust connection of this kind to every other. Here we study bicomponents in both real and model networks using a combination of exact analytic techniques and numerical methods. We show that standard network models predict there to be essentially no small bicomponents in most networks, but there may be a giant bicomponent, whose presence coincides with the presence of the ordinary giant component, and we find that real networks seem by and large to follow this pattern, although there are some interesting exceptions. We study the size of the giant bicomponent as nodes in the network fail, using a specially developed computer algorithm based on data trees, and find in some cases that our networks are quite robust to failure, with large bicomponents persisting until almost all vertices have been removed.Comment: 5 pages, 1 figure, 1 tabl

    The SO(N) principal chiral field on a half-line

    Get PDF
    We investigate the integrability of the SO(N) principal chiral model on a half-line, and find that mixed Dirichlet/Neumann boundary conditions (as well as pure Dirichlet or Neumann) lead to infinitely many conserved charges classically in involution. We use an anomaly-counting method to show that at least one non-trivial example survives quantization, compare our results with the proposed reflection matrices, and, based on these, make some preliminary remarks about expected boundary bound-states.Comment: 7 pages, Late

    On a_2^(1) Reflection Matrices and Affine Toda Theories

    Full text link
    We construct new non-diagonal solutions to the boundary Yang-Baxter-Equation corresponding to a two-dimensional field theory with U_q(a_2^(1)) quantum affine symmetry on a half-line. The requirements of boundary unitarity and boundary crossing symmetry are then used to find overall scalar factors which lead to consistent reflection matrices. Using the boundary bootstrap equations we also compute the reflection factors for scalar bound states (breathers). These breathers are expected to be identified with the fundamental quantum particles in a_2^(1) affine Toda field theory and we therefore obtain a conjecture for the affine Toda reflection factors. We compare these factors with known classical results and discuss their duality properties and their connections with particular boundary conditions.Comment: 34 pages, 4 figures, Latex2e, mistake in App. A corrected, some references adde

    Integrable Boundary Conditions and Reflection Matrices for the O(N) Nonlinear Sigma Model

    Get PDF
    We find new integrable boundary conditions, depending on a free parameter gg, for the O(N) nonlinear σ\sigma model, which are of nondiagonal type, that is, particles can change their ``flavor'' through scattering off the boundary. These boundary conditions are derived from a microscopic boundary lagrangian, which is used to establish their integrability, and exhibit integrable flows between diagonal boundary conditions investigated earlier. We solve the boundary Yang-Baxter equation, connect these solutions to the boundary conditions, and examine the corresponding integrable flows.Comment: 21 pages, 2 figures. v2: References added, typos corrected, few comments adde

    Kink-boundary collisions in a two dimensional scalar field theory

    Get PDF
    In a two-dimensional toy model, motivated from five-dimensional heterotic M-theory, we study the collision of scalar field kinks with boundaries. By numerical simulation of the full two-dimensional theory, we find that the kink is always inelastically reflected with a model-independent fraction of its kinetic energy converted into radiation. We show that the reflection can be analytically understood as a fluctuation around the scalar field vacuum. This picture suggests the possibility of spontaneous emission of kinks from the boundary due to small perturbations in the bulk. We verify this picture numerically by showing that the radiation emitted from the collision of an initial single kink eventually leads to a bulk populated by many kinks. Consequently, processes changing the boundary charges are practically unavoidable in this system. We speculate that the system has a universal final state consisting of a stack of kinks, their number being determined by the initial energy

    Supersymmetric WZW σ\sigma Model on Full and Half Plane

    Full text link
    We study classical integrability of the supersymmetric U(N) σ\sigma model with the Wess-Zumino-Witten term on full and half plane. We demonstrate the existence of nonlocal conserved currents of the model and derive general recursion relations for the infinite number of the corresponding charges in a superfield framework. The explicit form of the first few supersymmetric charges are constructed. We show that the considered model is integrable on full plane as a concequence of the conservation of the supersymmetric charges. Also, we study the model on half plane with free boundary, and examine the conservation of the supersymmetric charges on half plane and find that they are conserved as a result of the equations of motion and the free boundary condition. As a result, the model on half plane with free boundary is integrable. Finally, we conclude the paper and some features and comments are presented.Comment: 12 pages. submitted to IJMP

    Exact solutions for models of evolving networks with addition and deletion of nodes

    Full text link
    There has been considerable recent interest in the properties of networks, such as citation networks and the worldwide web, that grow by the addition of vertices, and a number of simple solvable models of network growth have been studied. In the real world, however, many networks, including the web, not only add vertices but also lose them. Here we formulate models of the time evolution of such networks and give exact solutions for a number of cases of particular interest. For the case of net growth and so-called preferential attachment -- in which newly appearing vertices attach to previously existing ones in proportion to vertex degree -- we show that the resulting networks have power-law degree distributions, but with an exponent that diverges as the growth rate vanishes. We conjecture that the low exponent values observed in real-world networks are thus the result of vigorous growth in which the rate of addition of vertices far exceeds the rate of removal. Were growth to slow in the future, for instance in a more mature future version of the web, we would expect to see exponents increase, potentially without bound.Comment: 9 pages, 3 figure
    • 

    corecore