1,722 research outputs found

    Blockchain in EU e-health - blocked by the barrier of data protection?

    Get PDF
    Compliance with data protection requirements is always a tricky business and even more intricate when it comes to cutting-edge technologies such as distributed ledger technology (DLT), better known as Block Chain Technology (BCT). These difficulties increase even more when the personal data concerned is accorded a special level of protection, as is the case with health data. The following article aims to describe and analyze the legal issues associated with this scenario. The focus here is on the European Union's (EU) General Data Protection Regulation (GDPR) 1, which took effect on May 25, 2018. Furthermore, the functionality of BCT and its possible fields of application in healthcare will be outlined

    Nearest neighbour models for local and regional avalanche forecasting

    No full text
    International audienceThis paper presents two avalanche forecasting applications NXD2000 and NXD-REG which were developed at the Swiss Federal Institute for Snow and Avalanche Re-search (SLF). Even both are based on the nearest neighbour method they are targeted to different scales. NXD2000 is used to forecast avalanches on a local scale. It is operated by avalanche forecasters responsible for snow safety at snow sport areas, villages or cross country roads. The area covered ranges from 10 km2 up to 100 km2 depending on the climatological homogeneity. It provides the forecaster with ten most similar days to a given situation. The observed avalanches of these days are an indication of the actual avalanche danger. NXD-REG is used operationally by the Swiss avalanche warning service for regional avalanche forecasting. The Nearest Neighbour approach is applied to the data sets of 60 observer stations. The results of each station are then compiled into a map of current and future avalanche hazard. Evaluation of the model by cross-validation has shown that the model can reproduce the official SLF avalanche forecasts in about 52% of the days

    A Flux-Differencing Formula for Split-Form Summation By Parts Discretizations of Non-Conservative Systems: Applications to Subcell Limiting for magneto-hydrodynamics

    Full text link
    In this paper, we show that diagonal-norm summation by parts (SBP) discretizations of general non-conservative systems of hyperbolic balance laws can be rewritten as a finite-volume-type formula, also known as flux-differencing formula, if the non-conservative terms can be written as the product of a local and a symmetric contribution. Furthermore, we show that the existence of a flux-differencing formula enables the use of recent subcell limiting strategies to improve the robustness of the high-order discretizations. To demonstrate the utility of the novel flux-differencing formula, we construct hybrid schemes that combine high-order SBP methods (the discontinuous Galerkin spectral element method and a high-order SBP finite difference method) with a compatible low-order finite volume (FV) scheme at the subcell level. We apply the hybrid schemes to solve challenging magnetohydrodynamics (MHD) problems featuring strong shocks

    A study of transfer and prevalence of organic gunshot residues

    Get PDF
    The main goal of the present study was to determine the amounts and distribution of organic gunshot residues (OGSR) on the shooter’s upper body and clothing after discharging a pistol. A preliminary study was also performed to evaluate the prevalence of OGSR in the general population as well as in a police laboratory environment. In the transfer study, results indicated that OGSR are not only transferred to the hand of the shooter, but also to other parts of the upper body. Thus, wrists and forearms also represent interesting targets as they are washed less frequently than hands. Samples from the face and hair of the shooters resulted in no OGSR detection just after firing. It was also observed that the concentrations recovered from clothing are generally higher compared to the same skin area. Prevalence in both general (n = 27) and police populations (n = 25) was very low. No OGSR was detected in the samples from the general population and only two samples from the police population were found positive

    Secondary transfer of organic gunshot residues: Empirical data to assist the evaluation of three scenarios.

    Get PDF
    The present study aimed at providing data to assess the secondary transfer of organic gunshot residues (OGSR). Three scenarios were evaluated in controlled conditions, namely displacing a firearm from point A to point B, a simple handshake and an arrest involving handcuffing on the ground. Specimens were collected from the firearm, the hands of the shooter and the non-shooter undergoing the secondary transfer in order to compare the amounts detected. Secondary transfer was observed for the three scenarios, but to a different extent. It was found that displacing a firearm resulted in secondary transfer in <50% of the experiments. The firearm also had an influence, as contrary to the pistol, no secondary OGSR were detected using the revolver. Shaking the hand of the shooter also transferred OGSR to the non-shooter's hand. In that case, the amount of OGSR was generally higher on the shooter than on the non-shooter. Finally, the largest secondary transfer was observed after the arrest with handcuffing with positive results in all cases using the pistol. In that scenario, the amounts on the shooter and the non-shooter were in the same range. This study highlights that the secondary transfer must be taken into account in the interpretation of OGSR. Indeed, an individual's hands might be contaminated by handling a firearm or having physical contact with a shooter

    High energy Coulomb-scattered electrons for relativistic particle beam diagnostics

    Full text link
    A new system used for monitoring energetic Coulomb-scattered electrons as the main diagnostic for accurately aligning the electron and ion beams in the new Relativistic Heavy Ion Collider (RHIC) electron lenses is described in detail. The theory of electron scattering from relativistic ions is developed and applied to the design and implementation of the system used to achieve and maintain the alignment. Commissioning with gold and 3He beams is then described as well as the successful utilization of the new system during the 2015 RHIC polarized proton run. Systematic errors of the new method are then estimated. Finally, some possible future applications of Coulomb-scattered electrons for beam diagnostics are briefly discussed.Comment: 16 pages, 23 figure
    corecore