216 research outputs found

    Explicit Reference Governor for Continuous Time Nonlinear Systems Subject to Convex Constraints

    Full text link
    This paper introduces a novel closed-form strategy that dynamically modifies the reference of a pre-compensated nonlinear system to ensure the satisfaction of a set of convex constraints. The main idea consists of translating constraints in the state space into constraints on the Lyapunov function and then modulating the reference velocity so as to limit the value of the Lyapunov function. The theory is introduced for general nonlinear systems subject to convex constraints. In the case of polyhedric constraints, an explicit solution is provided for the large and highly relevant class of nonlinear systems whose Lyapunov function is lower-bounded by a quadratic form. In view of improving performances, further specializations are provided for the relevant cases of linear systems and robotic manipulators.Comment: Submitted to: IEEE Transactions on Automatic Contro

    Modelling and Control of a Knuckle Boom Crane

    Full text link
    Cranes come in various sizes and designs to perform different tasks. Depending on their dynamic properties, they can be classified as gantry cranes and rotary cranes. In this paper we will focus on the so called 'knuckle boom' cranes which are among the most common types of rotary cranes. Compared with the other kinds of cranes (e.g. boom cranes, tower cranes, overhead cranes, etc), the study of knuckle cranes is still at an early stage and very few control strategies for this kind of crane have been proposed in the literature. Although fairly simple mechanically, from the control viewpoint the knuckle cranes present several challenges. A first result of this paper is to present for the first time a complete mathematical model for this kind of crane where it is possible to control the three rotations of the crane (known as luff, slew, and jib movement), and the cable length. The only simplifying assumption of the model is that the cable is considered rigid. On the basis of this model, we propose a nonlinear control law based on energy considerations which is able to perform position control of the crane while actively damping the oscillations of the load. The corresponding stability and convergence analysis is carefully proved using the LaSalle's invariance principle. The effectiveness of the proposed control approach has been tested in simulation with realistic physical parameters and in the presence of model mismatch.Comment: This paper has been accepted to International Journal of Control on March 29th 2021. arXiv admin note: text overlap with arXiv:2103.0250

    Towards an open database of assessment material for STEM subjects: requirements and recommendations from early field trials

    Get PDF
    If appropriately implemented, open databases of instruction material may help teaching and learning by providing content for teaching activities, scaffolding, and self-assessment. The paper presents the current results of the development and implementation of a database that is expressly built for promoting exchange of questions and exercises, together with the associated solutions among teachers for STEM subjects. Besides presenting and motivating the initiative (together with reporting its current status), the manuscript lists a series of lessons that have been learned while executing the project - including the need for proper management of authorship and version control of the uploaded material. Moreover, the manuscript describes which features any open database of instruction material should implement to aid improved usability, together with a series of nontrivial theoretical and practical problems for future scientific investigations (e.g., developing taxonomies for indexing the difficulty levels of the instruction material uploaded in the database that do not suffer from the subjective interpretability associated with the existing taxonomies)

    New conditions for finite-time stability of impulsive dynamical systems via piecewise quadratic functions

    Get PDF
    In this paper, the use of time-varying piecewise quadratic functions is investigated to characterize the finite-time stability of state-dependent impulsive dynamical linear systems. Finite-time stability defines the behavior of a dynamic system over a bounded time interval. More precisely, a system is said to be finite-time stable if, given a set of initial conditions, its state vector does not exit a predefined domain for a certain finite interval of time. This paper presents new sufficient conditions for finite-time stability based on time-varying piecewise quadratic functions. These conditions can be reformulated as a set of Linear Matrix Inequalities that can be efficiently solved through convex optimization solvers. Dif ferent numerical analysis are included in order to prove that the presented conditions are able to improve the results presented so far in the literature

    ALS-related FUS mutations alter axon growth in motoneurons and affect HuD/ELAVL4 and FMRP activity

    Get PDF
    Mutations in the RNA-binding protein (RBP) FUS have been genetically associated with the motoneuron disease amyotrophic lateral sclerosis (ALS). Using both human induced pluripotent stem cells and mouse models, we found that FUS-ALS causative mutations affect the activity of two relevant RBPs with important roles in neuronal RNA metabolism: HuD/ELAVL4 and FMRP. Mechanistically, mutant FUS leads to upregulation of HuD protein levels through competition with FMRP for HuD mRNA 3’UTR binding. In turn, increased HuD levels overly stabilize the transcript levels of its targets, NRN1 and GAP43. As a consequence, mutant FUS motoneurons show increased axon branching and growth upon injury, which could be rescued by dampening NRN1 levels. Since similar phenotypes have been previously described in SOD1 and TDP-43 mutant models, increased axonal growth and branching might represent broad early events in the pathogenesis of ALS

    Pooled HIV-1 Viral Load Testing Using Dried Blood Spots to Reduce the Cost of Monitoring Antiretroviral Treatment in a Resource-Limited Setting

    Get PDF
    : Rollout of routine HIV-1 viral load monitoring is hampered by high costs and logistical difficulties associated with sample collection and transport. New strategies are needed to overcome these constraints. Dried blood spots from finger pricks have been shown to be more practical than the use of plasma specimens, and pooling strategies using plasma specimens have been demonstrated to be an efficient method to reduce costs. This study found that combination of finger-prick dried blood spots and a pooling strategy is a feasible and efficient option to reduce costs, while maintaining accuracy in the context of a district hospital in Malawi
    • …
    corecore