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Abstract

In this paper, the use of time-varying piecewise quadratic functions is investigated to
characterize the finite-time stability of state-dependent impulsive dynamical linear systems.
Finite-time stability defines the behavior of a dynamic system over a bounded time interval.
More precisely, a system is said to be finite-time stable if, given a set of initial conditions,
its state vector does not exit a predefined domain for a certain finite interval of time. This
paper presents new sufficient conditions for finite-time stability based on time-varying
piecewise quadratic functions. These conditions can be reformulated as a set of Linear
Matrix Inequalities that can be efficiently solved through convex optimization solvers. Dif-
ferent numerical analysis are included in order to prove that the presented conditions are
able to improve the results presented so far in the literature.

1 INTRODUCTION

The definition of finite-time stability (FTS) was introduced
to characterize the evolution of a dynamical system, starting
from a specified set of initial condition, over an assigned and
finite interval of time. More specifically, in 1953 Kamenkov [1]
defined as finite-time stable an autonomous nonlinear sys-
tem ẋ = f (x, t ) if, given three scalars 𝛼, 𝛽 and T , with
0 < 𝛼 < 𝛽,

‖x(t0)‖ < 𝛼 ⇒ ‖x(t )‖ < 𝛽 for all t ∈ [t0, t0 + T ]. (1)

Since the definition by Kamenkov does not consider the sys-
tem operation over an infinite time interval and, moreover, it
introduces bounds on the state variables, it is different and
not directly correlated to Lyapunov stability and other classical
stability concepts.

A key point in the definition of FTS in [1] is the fact that it
depends on the specific norm used for the bounds. More gener-
ically, as discussed in Section 2, the FTS definition can be stated
assuming the initial state to belong to a certain set, defined initial
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domain, whereas the state trajectory is requested to remain within
another set, defined trajectories domain, for a finite time interval.
For this reason FTS is a more practical concept than Lyapunov
stability, that is, it can be used to verify than the state trajectories
of the system remain inside a specified domain over the con-
sidered time-interval. Indeed, FTS has been recently adopted
for the solution of control problem related to different appli-
cations, such as the design of a collision avoidance system for
a vehicle [2] and the design of a control system for a missile
[3].

In the literature, the term finite-time stability has been used
also with a different meaning than the one considered here. In
particular, in [4, 5] the authors refers to FTS as the property of
the system state of converging to zero in finite time.

After Kamenkov’s introduction, the concept of FTS was
developed in the sixties in [6–11]. In the following years, several
other results were proposed on this topic using the alterna-
tive terms of stability over finite interval or practical stability [12–15].
However, most of the techniques presented in that period both
for the analysis [16–18] and for the design of finite-time stable
control systems [19, 20] were computationally cumbersome.

IET Control Theory Appl. 2022;16:1341–1351. wileyonlinelibrary.com/iet-cth 1341

 17518652, 2022, 13, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12308 by C

ochraneItalia, W
iley O

nline L
ibrary on [26/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-8799-5837
https://orcid.org/0000-0003-1398-3897
mailto:roberto.ambrosino@unina.it
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-cth


1342 AMBROSINO ET AL.

More recently, the concept of FTS has been applied to dif-
ferent classes of dynamic systems and novel conditions for FTS
analysis and control design have been formulated exploiting the
theories of linear matrix inequalities (LMIs) [21] and differen-
tial LMIs (DLMIs) [22]. The proposed conditions are more
computationally tractable than the previous ones.

The most relevant results on the FTS of the class of linear
time-varying systems, possibly uncertain, have been collected in
the volume [23].

Extensions to the class of hybrid systems [24–28] and to
the class of nonlinear quadratic systems [29] have been pro-
posed, as well. Moreover, the stochastic-FTS property has been
recently introduced and it has been applied to the class of Itô
stochastic linear time-varying systems [30, 31] and to the class
of Markovian jump linear time-varying systems [32–34].

In all cited papers the initial and trajectories domains are
assumed to be ellipsoidal, which is consistent with the natural
choice of the Euclidean weighted norm. As a consequence, the
machinery used for finding the sufficient conditions for FTS is
based on quadratic Lyapunov functions.

In [35] the FTS problem assuming polytopic initial and
trajectories domains has been considered. This case is inter-
esting since polytopes enable to deal with common bounds
on the state variables in the form ximin

≤ xi ≤ ximax
. How-

ever, the FTS sufficient conditions proposed in [35] can be
solved only by means of a nonconvex algorithm and therefore
they are much less attractive than the conditions proposed for
ellipsoidal domains.

In this paper we focus on the FTS problem for the more gen-
eral class of state-dependent impulsive dynamical linear systems
(SD-IDLS) [36]. Early results regarding the FTS of SD-IDLS,
based on the use of quadratic Lyapunov functions, are pre-
sented in [25]. The new relevant contribution of this paper is
given by the fact that the class of Piecewise Quadratic Functions

(PQFs) [37–39] is considered for the FTS analysis. The use of
PQFs for the FTS problem of linear time-varying system has
been preliminary proposed in [40] showing the effectiveness of
the approach.

The main advantages given by the use of PQFs for FTS
purposes as it is proposed in this paper are:

∙ it is possible to recover as particular cases the ellipsoidal
and polytopic domains, and, moreover, it is also possible
to extend the FTS theory to any Piecewise Quadratic Domain

(PQD) without introducing any sort of approximation of the
domains;

∙ the conditions can be implemented by means of convex
optimization problems, even in the particular case of poly-
topic domains, and therefore they are very efficient from the
computational point of view. This is possible adopting an
original reparameterization of the optimization matrices, so
as to remove the equality constraints, without adding further
conservativeness;

∙ the use of PQFs fits particularly well with the class of SD-
IDLS giving the opportunity to dedicate a particular partition
of the piecewise quadratic Lyapunov function to the jump
state region.

The paper is structured as follows. In Section 2 some pre-
liminaries notions on FTS and on the class of PQFs and
PQDs are presented. The novel sufficient conditions for the
FTS of SD-IDLS, obtained exploiting the class of piecewise
quadratic Lyapunov function are provided in Sections 3; then
some numerical examples are presented in Section 4.

2 PRELIMINARIES

2.1 Problem statement

In this section the class of linear time-varying systems charac-
terized by finite state jump is first introduced. Indeed, the class
of SD-IDLS is considered, for which the state jumps take place
when the trajectory achieves a specified subset of the state space
defined resetting set.

A time-varying SD-IDLS is characterized by both a
continuous-time and a discrete-time dynamics

ẋ(t ) = A(t )x(t ), x(t0) = x0, x(t ) ∈ Rn∖
N⋃

k=1

k, (2a)

x(t+ ) = Jkx(t ), x(t ) ∈ k, k = 1, … ,N , (2b)

where A(⋅) ∶ R+
0 → Rn×n, Jk ∈ Rn×n, k = 1, … ,N . The sets

k, k = 1, … ,N , are connected and closed pairwise disjoint
sets, such that 0 ∉ k.

The following assumption allows only a finite number of state
jumps in any finite interval of time, that is, no Zeno behaviour
is allowed.

Assumption 1. For all t ∈ ℝ+
0 such that x(t ) ∈ k, there exists

𝜖 > 0 such that x(t + 𝛿) ∉ k, ∀𝛿 ∈ (0, 𝜖), k = 1, … ,N .

In this paper we derive novel sufficient conditions for the
FTS of SD-IDLS (2) in case that both the initial and the tra-
jectories domains can be modelled as PQDs, that is, there exist
positive definite PQFs such that their unitary level curves model
the boundaries of the considered domains [37, 38].

For sake of clarity, before introducing a definition about
FTS property via PQDs, we recall some preliminary definitions
about PQFs and PQDs [39].

2.2 Cones and conical partitions

A set G is a polyhedral cone in Rn if it is defined by means of
the conical combination of p vectors, x̄i ∈ Rn, i = 1, … , p, that
is

G = cone
(
{x̄1, … , x̄p}

)
∶=

{
x̄ ∶ x̄ =

p∑
i=1

𝜇i x̄i , 𝜇i ≥ 0, i = 1, … , p

}
. (3)
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The dimension of a cone G in Rn is the column rank of the
matrix G ∶= [x̄1 … x̄p ]. A set of normalized extremal rays

of G is defined as any minimal set of q ≤ p vectors {x̂1, … , x̂q},
with ||x̂i ||2 = 1, i = 1, … , q, such that

G = cone({x̂1, … , x̂q}). (4)

If a cone G in Rn has dimension dim(G ) = n, the set of
normalized extremal rays is univocally determined.

The definition of cones allows us to divide the overall state
space in conical regions, as proposed in the following definition.

Definition 1 (Conical partition of Rn). A collection of cones
Gi , i = 1, … , r , defines a conical partition  = {G1, … ,Gr } of
Rn if and only if:

∙ the dimension of each conical subset Gi is n
∙ the whole state space Rn is covered by the union of the

conical sets Gi , i = 1, … , r
∙ the intersection between the interior of two adjacent cones

Gi and G j is empty.

◊

Given a conical partition  , the set of generating rays R is
defined as the union of the normalized extremal rays of each
cone in 

 =
⋃

Gi∈

extr(Gi ) = {x̂1, … , x̂v}. (5)

Finally, from union of two conical partitions 1 and 2 of Rn

we obtain a conical partition  whose set of generating rays is
given by

 = 1 ∪2 . (6)

2.3 Piecewise quadratic functions and
domains over a conical partition

The definitions of PQFs and PQDs, originally introduced in
[39], are recalled in the following.

Definition 2 (PQFs over a conical partition [39]). A
time–varying PQF, defined over a conical partition  =
{G1, … ,Gr } of Rn, is a space-continuous, piecewise contin-
uously time-differentiable, positive definite function in the
form

H (x, t ) = xT Hi (t )x, x ∈ Gi , i = 1, … , r , (7)

where Hi (t ) ∈ Rn×n, i = 1, … , r , are symmetric matrix-valued
functions positive definite in the cone Gi , such that

xT Hi (t )x > 0, x ∈ Gi∖{0} (8)

for t ≥ 0 and i = 1, … , r . ◊

The condition

xT Hi (t )x = xT Hj (t )x, x ∈ Gi ∩ G j , (9)

has to be satisfied for i, j = 1, … , r , i ≠ j , t ≥ 0 in order to
ensure the space-continuity of the PQF H (x, t ).

Definition 3 (PQD over a conical partition [39]). Given the
conical partition  = {G1, … ,Gr } of Rn, a time-varying PQD
defined over  is a compact domain whose boundary is the
unitary level curve of a PQF H (x, t ), that is

H
(t ) ∶ = {x ∶ H (x, t ) ≤ 1}

= {x ∶ xT Hi (t )x ≤ 1, x ∈ Gi , i = 1, 2, … r}.

(10)

◊

In what follows a time-invariant PQF will be denoted by
H (x ), while a time-invariant PQD will be denoted by H

.

2.4 Finite-time stability via PQFs

In [25] the authors analyzed the FTS property of system (2)
assuming ellipsoidal domains. Now, the FTS property is general-
ized to the case of piecewise quadratic initial and the trajectories
domains. Indeed, let us consider an initial domain R

and a
trajectory domain Γ , being R and Γ (t ) two PQFs defined
over the same partition  = (G1, … ,Gr ) of Rn 1:

R = xT Rix for x ∈ Gi and i = 1, … , r , (11)

Γ (t ) = xT Γi (t )x for x ∈ Gi and i = 1, … , r . (12)

Definition 4 (FTS of SD-IDLS via PQDs). Given an initial
time t0, a positive scalar T , a time invariant PQD R

, a time
varying PQD Γ , system (2) is said to be finite-time stable wrt
(t0, T ,R

,Γ ) if

x0 ∈ R
⇒ x(t , x0) ∈ Γ , ∀t ∈ [t0, t0 + T ]. (13)

where x(t , x0) is the trajectory of system starting from the initial
state x0. ◊

Since the level curves of a positive definite PQF are described
by the union of portion of ellipsoids, we are able to tackle FTS
problems characterized to any PQDs without introducing any

1 The definition can be also generalized to the case of initial and trajectories domains
defined over different partitions considering that a reparameterized on a common partition
can be easily obtained from the union of the different partitions (see [39])
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1344 AMBROSINO ET AL.

sort of approximation of the domains; in particular, ellipsoidal
and polytopic domains can be recovered as particular cases.

3 MAIN RESULTS

In the following, a novel sufficient conditions for the FTS of
the SD-IDLS system (2) will be obtained by assuming PQDs
domains. After that, the presented condition will be recast
as a DLMIs feasibility problem, in order to formulate more
computationally tractable sufficient conditions.

Theorem 1. Let us consider the SD-IDLS system (2), the time inter-

val [t0, t0 + T ] and two PQDs R
and Γ (t ), t ∈ [t0, t0 + T ],

defined over the partition  = (G1, … ,Gr ) of Rn. System (2) is FTS

with respect to (t0, T ,R
,Γ ) if there exists a PQF P (x, t ),

defined over the partition  , verifying the following equality conditions for

space-continuity

xT Pi (t )x = xT Pj (t )x, x ∈ Gi ∩ G j , (14)

for i, j = 1, … , r , i ≠ j , ∀t ∈ [t0, t0 + T ], and such that

xT
(
Ṗi (t ) + AT (t )Pi (t ) + Pi (t )A(t )

)
x < 0, x ∈ Gi∖

N⋃
k=1

k,

(15a)

xT
(

AT
d ,kPj (t )Jk − Pi (t )

)
x < 0, x ∈ Gi ∩ k, (15b)

xT
(
Pi (t ) − Γi (t )

)
x ≥ 0, x ∈ Gi , (15c)

xT
(
Pi (t0) − Ri

)
x ≤ 0, x ∈ Gi , (15d)

for ∀t ∈ [t0, t0 + T ], i, j = 1, … , r and k = 1, … ,N .

Proof. Let consider a PQF P (x, t ) which verifies the equality
conditions for space-continuity (14).

Given a system trajectory which does not reach any resetting
set k for k = 1, … ,N , the time derivative of P (x, t ) is defined
and it yields

Ṗ (t , x ) = xT
(
Ṗi (t ) + AT (t )Pi (t ) + Pi (t )A(t )

)
x,

x ∈ Gi∖
N⋃

k=1

k, i = 1, … , , r , (16)

which is negative by virtue of (15a).
Moreover, when the system trajectory touches a reset set,

moving from the cone Gi to G j , the variation of P (x, t ) is
written as

P (t+, x ) − P (t , x ) = xT
(

AT
d ,kPj (t )Jk − Pi (t )

)
x(t )

∈ Gi ∩ k, x(t+ ) ∈ G j , (17)

which is negative by virtue of (15a) for any pair of cones
(G j , G j ), for i, j = 1, … , r , such that Gi ∩ k ≠ ∅ for k =
1, … ,N .

From the above considerations we obtain that P (x, t ) is
strictly decreasing along the trajectories of system (2); hence, we
have

P (x(t , x0), t ) ≤ P (x(t0, x0), t0), t ∈ [t0, t0 + T ]. (18)

Now, consider an initial state x0 ∈ R
, the following chain

of inequalities holds, for t ∈ [t0, t0 + T ],

Γ (x(t , x0), t ) ≤ P (x(t , x0), t ) in view of (15c) (19)

≤ P (x(t0, x0), t0) (20)

≤ R (x0) < 1 in view of (15d). (21)

We can conclude that x0 ∈ R
implies Γ (x(t , x0), t ) < 1,

for t ∈ [t0, t0 + T ], that is, x(t , x0) ∈ Γ , for t ∈ [t0, t0 +
T ]. □

Now, by considering the results in [39] and taking advan-
tage from the S-Procedure arguments [21], we investigate how
to recast the infinite-dimensional inequalities (14) and (15) to a
DLMIs feasibility problem.

Theorem 2. Let us consider the SD-IDLS system (2), the time

interval [t0, t0 + T ] and two PQDs R
and Γ , t ∈ [t0, t0 +

T ], defined over the partition  = (G1, … ,Gr ) of Rn. Given any

matrices Vi ,Li,k ∈ Rn×n verifying

xT Vix ≤ 0, x ∈ Gi , i = 1, … , r , (22)

xT Li,kx ≤ 0, x ∈ Gi ∩ k, i = 1, … , r , k = 1, … ,N ,
(23)

system (2) is FTS with respect to (t0, T ,R
,Γ ) if there exists

a PQF P (x, t ), defined over the partition  , verifying the following

equality conditions for space-continuity

x̂T
h

Pi (t )x̂h = x̂T
h

Pj (t )x̂h, (24a)

x̂T
k

Pi (t )x̂k = x̂T
k

Pj (t )x̂k, (24b)

x̂T
h

Pi (t )x̂k = x̂T
h

Pj (t )x̂k, (24c)

for all pairs of vectors x̂h, x̂k taken from extr (Gi ∩ G j ) for i, j =
1, … , r , i ≠ j , ∀t ∈ [t0, t0 + T ], and there exist positive scalar func-

tions ai (t ), bi,k(t ), ci (t ) and positive scalars di satisfying the DLMIs

conditions

Ṗi (t ) + AT (t )Pi (t ) + Pi (t )A(t ) − ai (t )Vi < 0, (25a)
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AMBROSINO ET AL. 1345

AT
d ,kPj Jk − Pi (t ) − bi,k(t )Li,k < 0, if Gi ∩ k ≠ ∅,

(25b)

Pi (t ) − Γi (t ) + ci (t )Vi ≥ 0, (25c)

Pi (t0) − Ri − diVi ≤ 0, (25d)

for ∀t ∈ [t0, t0 + T ], i, j = 1, … , r and k = 1, … ,N .

Proof. The proof is obtained by making use of S–Procedure
arguments following the approach in [39]. □

Finally, we consider a reparameterization of the quadratic
form P (x, t ), which allows us to obtain a convex optimization
problem from the sufficient conditions (24)-(25). In particular,
we consider for matrix functions Pi (⋅), i = 1, … , r a structure
that allows us to verify the equality constraints (24) with-
out explicitly account them into the theorem statement. For
this reason, we consider the next technical lemma proved in
[39].

Lemma 1 ([39]). Consider the quadratic form P (x, t ) defined

over the partition  = (G1, … ,Gr ) of Rn with the set of generating

rays [x̂1 … x̂v]. The quadratic form P (x, t ) verifies the equality con-

ditions for space-continuity if and only if there exists a symmetric matrix

function Θ(t ) = {𝜃i j (t )} ∈ Rv×v such that

x̂T
i Pk(t )x̂i = 𝜃ii (t ), (26a)

x̂T
i Pk(t )x̂ j = 𝜃i j (t ), (26b)

for i, j = 1, … , v and x̂i , x̂ j ∈ extr(Gk ), k = 1, … , r .

In the following we assume to consider only PQFs defined
over a partition of Rn characterized by cone with dimen-
sion n. Since any cone with more than n extremal rays,
can be partitioned in a collection of cones of dimension
n, the above assumption does not introduce any loss of
generality.

In order to take advantage from the result of Lemma 1, we
consider that given the matrix containing all the generating rays
of a conical partition 

= [x̂1 … x̂v], we can built a selec-

tion matrices Λi that allows us to compute the matrix with the
extremal rays of Gi , namely extr (Gi ) = [x̂i1

… x̂in
], as

extr (Gi ) = 
Λi . (27)

From its definition, we obtain that Λi is a v × n matrix and its
columns have all zero terms except a unitary value in the row
associated to one of the extremal rays of the cone Gi .

Starting from the matrix function Θ(⋅) defined in Lemma 1,
we define the matrix functions Θi (⋅) for i = 1, … , r , which are
characterized by the parameters associated with the i-th cone

as

Θi (t ) =

⎡⎢⎢⎢⎢⎣
𝜃i1i1

(t ) 𝜃i1i2
(t ) ⋯ 𝜃i1in

(t )

∗ 𝜃i2i2
(t ) ⋯ ⋯

∗ ∗ ⋯ 𝜃in−1in
(t )

∗ ∗ ∗ 𝜃inin
(t )

⎤⎥⎥⎥⎥⎦
,

i = 1, … , r . (28)

By taking into account their definitions, we obtain that the
matrix functions Θ(⋅) and Θi (⋅) are related by the selection
matrix Λi as follows

Θi (⋅) = ΛT
i Θ(⋅)Λi . (29)

Moreover, form results of Lemma 1 and the definition of
the matrix function Θi (⋅) in (28), we obtain that the equality
constraints (24) for the i-th cone can be rewritten as

⎡⎢⎢⎢⎣
x̂T

i1

⋮

x̂T
in

⎤⎥⎥⎥⎦Pi (t )
[
x̂i1

… x̂in

]
= Θi (t ), (30)

or equivalently

T
extr (Gi )Pi (t )extr (Gi ) = Θi (t ). (31)

Finally, the assumption on the dimensions of the cones that
define the partition ensures that the matrices R

Λi for i =
1, … , r are invertible. Hence,

Pi (t ) =
(
R

Λi

)−T

ΛT
i Θ(t )Λi

(
R

Λi

)−1
,

i = 1, … , r , (32)

Reparameterization (32) of the functions Pi (⋅) for i = 1, … , r
as a function of Θ(⋅) allows us to verify the equality con-
straints (24). In this way, condition for FTS of system (2) can
be rewritten as feasibility problem based on DLMIs/LMIs.

Theorem 3. Let us consider the SD-IDLS system (2), the time interval

[t0, t0 + T ] and two PQDs R
and Γ , t ∈ [t0, t0 + T ], defined

over the partition  = (G1, … ,Gr ) of Rn.

Given any matrices Vi ,Li,k ∈ Rn×n verifying

xT Vix ≤ 0, x ∈ Gi , i = 1, … , r , (33a)

xT Li,kx ≤ 0, x ∈ Gi ∩ k, i = 1, … , r , k = 1, … ,N .

(33b)

System (2) is FTS with respect to (t0, T ,R
,Γ ) if there exists

a PQF P (x, t ), defined over the partition  , the positive scalar func-

tions ai (t ), bi,k(t ), ci (t ) and positive scalars di satisfying the DLMIs
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1346 AMBROSINO ET AL.

conditions

Ṗi (t ) + AT (t )Pi (t ) + Pi (t )A(t ) − ai (t )Vi < 0, (34a)

AT
d ,kPj Jk − Pi (t ) − bi,k(t )Li,k < 0, if Gi ∩ k ≠ ∅,

(34b)

Pi (t ) − Γi (t ) + ci (t )Vi ≥ 0, (34c)

Pi (t0) − Ri − diVi ≤ 0, (34d)

for ∀t ∈ [t0, t0 + T ], i, j = 1, … , r and k = 1, … ,N , where the

matrices Pi (⋅) for i = 1, … , r are defined as

Pi (t ) =
(
R

Λi

)−T

ΛT
i Θ(t )Λi

(
R

Λi

)−1
,

i = 1, … , r . (35)

The analysis conditions (34) require to be rewritten in terms
of LMIs, defining a convex optimization problem. To this aim,
the following remarks are considered.

Remark 1. The use of piecewise quadratic functions reduces
the conservativeness of the LMI conditions for the FTS anal-
ysis with respect to the case of an unique quadratic function.
Moreover, in the example section, it is shown that the number
of conical regions of the Lyapunov piecewise quadratic function
also affects the performance of the method. On the other hand,
the dimension of the conical partition influences the compu-
tational complexity of Theorem 3. Indeed, assuming that each
resetting set belongs to a single cone, the number of time-

dependent optimization variables is given by
v(v+1)

2
+ 3r + N ,

where

∙ v(v+1)

2
is the number of elements of the symmetric matrix

Θ(t ) ∈ Rv×v , where v is the number of generating rays;
∙ 3r is the total number of variables ai (t ), ci (t ), di , for i =

1, … , r being r the number of cones in the partition;
∙ N is the number of resetting sets, and hence of variables

bi,k(t ) since k = 1, … ,N ;

while the number of inequality conditions is (3 + N )r .

Remark 2. According to the previous literature (e.g.
see [23], [25]), a possible way of recasting the DLMIs condi-
tions (34) in terms of LMIs, is to assume a piecewise linear
structure for the scalar functions ai (t ), bi,k(t ), ci (t ) and for
the matrix function Θ(⋅) ∈ Rv×v . For instance, the matrix
function Θ(⋅) can be assumed in the form

Θ(t ) =

⎧⎪⎪⎨⎪⎪⎩

Θ0 + Ψ1 (t − t0) , t ∈
[
t0, t0 + Ts] ,

Θ0 +
∑ j

h=1 Ψh Ts + Ψ j+1 (t − jTs − t0) ,

t ∈
[
t0 + jTs , t0 + ( j + 1)Ts

]
j = 1, … , J

(36)

where J = max{ j ∈ ℕ ∶ j < T ∕Ts}, Ts ≪ T , and Θ0 and Ψl ,
l = 1, … , J + 1, are the new optimization variables. ◊

4 EXAMPLES

Four numerical examples have been developed with the purpose
of investigating on the improvement introduced by the analysis
conditions (34). In particular, these examples analyze the advan-
tages related to the time-varying piecewise quadratic Lyapunov
functions and their level curves, which represent the bounds of
PQDs and can conform the shape of the bounds of different
class of domains.

In the first three examples, we consider the SD-IDLS sys-
tem considered in [25], which has been characterized by the
following matrices

A =

[
0 1

−1 + 0.3 sin 10t 0.5

]
, Ad ,1 =

[
1.2 0

0 −0.75

]
, (37a)

Ad ,2 =

[
−0.72 0.16
0.13 −0.78

]
, (37b)

and by the following two resetting sets 1 and 2

1 = conv

((
−0.4
0.6

)
,

(
0.8
0.7

))
, (38a)

2 = conv

((
−0.8
0.3

)
,

(
0.4
−0.6

))
. (38b)

In the first example, we propose a comparison between pro-
posed approach and previous literature one for the case of
ellipsoidal domains [25]. In particular, results point out that con-
ditions (34) are less conservative that the one in [25] in terms of
FTS analysis.

In the second example, we tackle the FTS analysis where
the domains are assumed to be polytopic. In this case, the
approaches proposed in the previous literature cannot be
applied since they are restricted to ellipsoidal domains. The main
goal of this example is to show that the proposed technique
allows us to take into account a more general class of domains
(piecewise quadratic).

In the third example, we tackle the FTS analysis where the
initial domains is assumed to be ellipsoidal, while the trajec-
tory domains is polytopic. In this way, we stress the capability
of the proposed approach to be used for FTS analysis problems
characterized by different class of domains.

The last example deals with the FTS analysis problem of a
bouncing pendulum over a vertical wall. The main goal of this
example is to show the effectiveness of the proposed approach
for an application.

Example 1. In this example we perform a comparison with
the results shown in [25], where the authors have proven the
FTS property for the SD-IDLS system characterized by the
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AMBROSINO ET AL. 1347

TABLE 1 Maximization procedure of the time interval

Number of cones of partition Time interval

r = 1 T = 2.5 s

r = 2 T = 2.6 s

r = 4 T = 2.8 s

r = 8 T = 3.5 s

matrices (37) and the reset sets (38), with respect to

t0 = 5s, T = 2.5s, (39)

Γ =

[
0.20 −0.10

−0.10 0.18

]
, R =

[
7.5 4.5

4.5 9.0

]
. (40)

A general FTS problem requires the definition of an initial
domain, a trajectories domain and a time interval. To the aim
of evaluating the improvement of the proposed approach, we
achieve a maximization procedure of the time interval, without
change both initial and trajectories domains.

In particular, after setting the conical partition of both the
initial and trajectories domains, we look for the maximum time
interval, that is, the constant T , for which the solution of the
analysis conditions (34) can be computed. This optimization
problem has been solved by considering the following iterative
procedure: starting from the initial value T̄ = 2.5 s, we increase
its value by ΔT = 0.1 s until we are able to compute a solution
of the analysis conditions (34).

Table 1 shows the solution of the optimization problems for
different symmetric partitions  of R2 characterized by dif-
ferent numbers of cones. It can be noted that we are able to
verify the FTS of the considered SD-IDLS system for a longer
time interval by increasing the number of cones of the parti-
tion. In particular, we are able to improve the fitting capability
of the level curves of the Lyapunov functions by increasing the
number of cones of the partition. Finally, Figure 1 shows some
system trajectories that are FTS with respect to T = 3.5 s and
the considered ellipsoidal domains.

Example 2. In this example we check the FTS property for
the SD-IDLS system characterized by the matrices (37) and the
reset sets (38). We consider polytopic bounds on both the ini-
tial and trajectories domains. In particular, the initial domain
is defined by the PQD R0

and the trajectories domain is
defined by the PQD Γ0

, where the conical partition is 0 =
{G1,G2,G3,G4} with

G1 = cone

({√
2

2

(
1 1

)T
;
√

2

2

(
1 −1

)T
})

, (41)

G2 = cone

({√
2

2

(
1 −1

)T
;
√

2

2

(
−1 −1

)T
})

, (42)

FIGURE 1 Example 1: FTS analysis problem characterized by ellipsoidal
domains. Figure 3 shows some state trajectories, which remain confined into
the ellipsoidal trajectories domain for the whole time interval, starting from
some different points inside the ellipsoidal initial domain

G3 = cone

({√
2

2

(
−1 −1

)T
;
√

2

2

(
−1 1

)T
})

, (43)

G4 = cone

({√
2

2

(
−1 1

)T
;
√

2

2

(
1 1

)T
})

; (44)

and the PQF R (x ) and Γ (x ) are defined by the following
diadic matrices

R1 = 2.8571
(
1 0

)T
(

1 0
)
, Γ1 = 0.1273 R1, (45)

R2 = 2.8571
(
0 −1

)T (
0 −1

)
, Γ2 = 0.1273 R2, (46)

R3 = 2.8571
(
−1 0

)T (
−1 0

)
, Γ3 = 0.1273 R3, (47)

R4 = 2.8571
(
0 1

)T (
0 1

)
, Γ4 = 0.1273 R4. (48)

By considering the above domains R0
and Γ0

and the

initial time t0 = 0, we have maximized the time interval
[
t0 T
]
,

that is, we have maximized the time instant T , in which we are
able to solve the FTS conditions (34). In particular, by using
the same maximization procedure defined in previous example,
and by considering a symmetric partition  of R2 composed
by 8 cones, we are able to compute a solution of the FTS con-
ditions (34) for T = 4 s. Figure 2 shows some state trajectories
of the considered system starting from some different points
inside the initial polytopic domain.

Example 3. In this example we check the FTS property for
the SD-IDLS system characterized by the matrices (37) and the
reset sets (38). In this case, the FTS analysis problem is char-
acterized by an initial domain with an ellipsoidal bound and a
trajectory domain with a polytopic bound. The main goal of
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1348 AMBROSINO ET AL.

FIGURE 2 Example 2: FTS analysis problem characterized by polytopic
domains. Figure shows some state trajectories, which remain confined into the
polytopic domain Γ0

for the whole time interval, starting from some
different points inside the polytopic initial domain

this example is to show the capability of the proposed approach
to work with different classes of domain. In particular, previous
literature approaches do not allow us to solve this kind of FTS
analysis problem.

To this purpose, we investigate on the FTS property of the
the SD-IDLS system characterized by the matrices (37) and the
reset sets (38), with respect to the initial domain defined by the
positive defined matrix

R =

[
7.5 4.5

4.5 9.0

]
, (49)

and the trajectories domain defined by the PQD Γ0
, where

the conical partition is 0 = {G1,G2,G3,G4} with

G1 = cone

({√
2

2

(
1 1

)T
;

√
2

2

(
1 −1

)T

})
, (50)

G2 = cone

({√
2

2

(
1 −1

)T
;

√
2

2

(
−1 −1

)T

})
, (51)

G3 = cone

({√
2

2

(
−1 −1

)T
;

√
2

2

(
−1 1

)T

})
, (52)

G4 = cone

({√
2

2

(
−1 1

)T
;

√
2

2

(
1 1

)T

})
; (53)

and the PQF Γ (x ) is characterized by the following diadic
matrices

Γ1 =
(√

2.75 0
)T (√

2.75 0
)
, (54)

FIGURE 3 Example 3: FTS analysis problem characterized by an
ellipsoidal initial domain and a polytopic trajectories domain. Figure shows
some state trajectories, which remain confined into the polytopic domain Γ0
for the whole time interval, starting from some different points inside the
ellipsoidal initial domain.

Γ2 =
(

0 −
√

2.75
)T (

0 −
√

2.75
)
, (55)

Γ3 =
(
−
√

2.75 0
)T (

−
√

2.75 0
)
, (56)

Γ4 =
(

0
√

2.75
)T (

0
√

2.75
)
. (57)

By considering the above ellipsoidal the PQD Γ0
and the

initial time t0 = 0, we have maximized the time interval
[
t0 T
]
,

that is, we have maximized the time instant T , in which we are
able to solve the FTS conditions (34). In particular, by using
the same maximization procedure defined in Example 1, and
by considering a symmetric partition  of R2 composed by 8
cones, we are able to compute a solution of the FTS condi-
tions (34) for T = 4 s. Figure 3 shows some state trajectories,
which remain confined into the polytopic domain Γ0

for the
whole time interval, starting from some different points inside
the ellipsoidal initial domain.

Example 4. In this example we consider a pendulum bouncing
on a vertical wall (see Figure 4). Due to the vertical wall, the
dynamic of the pendulum has been modelled as a SD-IDLS.

The continuous-time dynamic of the pendulum has been
modelled by considering its linearized model for small oscil-
lations. By following the hybrid model of a bouncing ball
proposed in [41], the wall has been modelled as a resetting set,
which instantly reverses the speed of the pendulum, moreover
a positive coefficient 𝜇 < 1 has been introduced to take into
account the loss of energy during the impact with the wall. In
this way, the SD-IDLS system (2) has been characterized by the
following matrices

A =

[
0 1

−
g

L
−

Cd

mL2

]
, Ad =

[
1 0
0 −𝜇

]
, (58)
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AMBROSINO ET AL. 1349

FIGURE 4 Example 4: Schematic representation of a pendulum,
characterized by the mass m and the length L, bouncing on a vertical wall. The
angular position of the pendulum x̂1 at the impact with the wall can be
obtained from the distance between the pivot point P and the wall

TABLE 2 Simulation parameters

Parameters Value

g 9.81 m/s2

m 0.5 kg

Cd 0.01 kg m2/ s

L 0.5 m

𝜇 0.9

x̂1 0.1745 rad

and by the following resetting set

 =
{

x ∈ R2 ∶ x1 = x̂1
}
, (59)

where the state variables x1 and x2 are the angular position and
the angular speed of the pendulum, respectively, m and L are
the mass and the length of the pendulum, respectively, g is the
gravity acceleration, Cd is the air friction coefficient and x̂1 is
the angular position of the pendulum at the impact with the wall.
The considered values of the above the coefficients are reported
in Table 2.

In the following we provide the results of the FTS analysis
with respect to the initial domain defined by the PQD R0

,

where the conical partition is 0 = {G1,G2,G3,G4} with

G1 = cone

({√
2

2

(
1 1

)T
;

√
2

2

(
1 −1

)T

})
, (60)

G2 = cone

({√
2

2

(
1 −1

)T
;
(
−0.40 −0.92

)T

})
, (61)

G3 = cone
({(

−0.40 −0.92
)T

;
(
−0.40 0.92

)T
})

, (62)

G4 = cone

({(
−0.40 0.92

)T
;

√
2

2

(
1 1

)T

})
; (63)

and the PQF R (x ) is defined by the following diadic matrices

R1 = 0.1745
(
1 0

)T (
1 0

)
, (64)

R2 = 0.2000
(
0 −1

)T (
0 −1

)
, (65)

R3 = 0.0873
(
−1 0

)T (
−1 0

)
, (66)

R4 = 0.2000
(
0 1

)T (
0 1

)
. (67)

Note that the initial domain constrains the initial angle to satisfy
the condition

x̂1 ≤ x1(t0) ≤ 10 deg, (68)

in order to take into account the minimum position related
to the wall and the small oscillations assumption; the trajec-
tory domain is defined by a time-varying ellipsoidal domain by
considering the following matrix function

Γ(t ) = Γ0e𝜀 t (69)

where

Γ0 =

[
5.2525 0

0 1.0000

]
, 𝜀 = 0.2. (70)

By considering the initial and final time t0 = 0 s and T = 10 s,
respectively, we are able to compute a solution of the FTS con-
ditions (34) over a partition  of R2 composed by 8 cones.
Figure 5a shows the extremal rays of the partition  , the poly-
topic initial domain R0

and the trajectory domains at the
initial and final time, respectively. Finally, Figure 5a shows
the weighted norm of the system state vector starting from
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1350 AMBROSINO ET AL.

FIGURE 5 Example 4: (a) shows a polytopic initial domain and a time-vaying ellipsoidal trajectories domain that characterize the FTS analysis problem; (b)
shows that, starting from the point x0 = [0.1745 − 0.2]T , the weighted norm of the state vector is less than the time-varying threshold value for the whole time
interval [t0, t0 + T ], that is, xT (t )Γ0x(t ) < e−𝜀t , ∀t ∈ [t0, t0 + T ]; this proves that the state trajectory remains confined into the time-varying trajectory domain for
the whole time interval

the point x0 =
[
0.1745 −0.2

]T
and the time-varying threshold

value; in particular, since

xT (t )Γ0x(t ) < e−𝜀t , ∀t ∈ [t0, t0 + T ], (71)

it can be verified that the state trajectory remains confined into
the time-varying trajectory domain for the whole time interval.

5 CONCLUSIONS

Novel analysis conditions for the FTS property have been
derived for the class of time-varying SD-IDLSs. The proposed
approach makes use of the class of time-varying piecewise
quadratic Lyapunov functions. The main advantage of this class
of Lyapunov functions is related to their level curves, which rep-
resent the bounds of PQDs and they can conform the shape of
the bounds of different class of domains. From the practical
point of view, this approach has led us to a condition based on
an optimization problem involving infinite dimensional inequal-
ities, that has been recast as feasibility problem based on LMIs.
Different numerical examples have been developed and their
results prove the improvements of the proposed approach. The
novel analysis condition results to be less conservative with
respect to the existing literature and it allows us to deal with
FTS analysis problem in which the initial and/or the trajecto-
ries domain can be modelled as PQDs, such as polytopic and
ellipsoidal ones.
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