16 research outputs found

    Régulation non canonique de l'activité de mTOR par la stabilisation de DEPTOR

    Get PDF
    La protéine mTOR (mechanistic Target Of Rapamycin), lorsque dérégulée, favorise le développement tumoral par ses fonctions dans la prolifération et la survie cellulaire. Son activité est contrôlée principalement par les facteurs de sa voie d'activation canonique (PTEN/PI3K/AKT) qui sont souvent mutés dans les cancers. Cependant, certains cancers ne présentent pas d'altérations dans cette voie canonique bien que mTOR soit constitutivement active, suggérant ainsi un mécanisme différent. C'est le cas des gliomes de bas grade dont une grande partie présente des mutations hétérozygotes de l'enzyme Isocitrate déshydrogénase (IDH1 et IDH2) menant à un gain de fonction de celles-ci. En effet, l'α-cétoglutarate (αKG) produite par les formes sauvages sera rapidement transformé en 2-Hydroxyglutarate (2HG) par les formes mutées. De plus, ces gliomes présentent très tôt une activité accrue de mTOR et ce, de façon PTEN indépendante. Un criblage par ARN d'interférence ciblant des enzymes αKG dépendantes a permis l'identification de KDM4A, une lysine déméthylase, comme un nouveau régulateur de mTOR. La régulation de KDM4A sur mTOR n'est pas transcriptionnelle, mais semble due à son interaction avec DEPTOR. En effet, sa stabilité, en absence de KDM4A, est grandement diminuée, ce qui favorise l'activité de mTOR. Ainsi, l'implication de KDM4A sur l'activité de DEPTOR s'avère être un nouveau mode de régulation de la protéine mTOR. Nous avons également découvert que DEPTOR peut être phosphorylé sur sa tyrosine 289, ce qui favorise l'activité de mTOR. Cette tyrosine, située près de sérines connues pour réguler la dégradation de DEPTOR, permet une meilleure stabilité de la protéine. De plus, la phosphorylation favorise une réorganisation rapide du cytosquelette d'actine par l'activation de mTORC2. Nous avons par la suite montré qu'elle diminue l'affinité de DEPTOR pour mTOR amenant une activation accrue de cette voie. Un criblage avec différents inhibiteurs de tyrosines kinases de même qu'une analyse par spectrométrie de masse nous a permis d'identifier les kinases SYK (Spleen Tyrosine Kinase) et EPHB2 comme régulateurs de la phosphorylation tyrosine de DEPTOR. En effet, nous avons démontré que la phosphorylation de SYK sur DEPTOR était dépendante de l'activation de SYK par EPHB2. En plus de cette phosphorylation tyrosine, DEPTOR possède également de nombreuses autres modifications post-traductionnelles. En effet, il peut être ubiquitinilé par des chaînes d'ubiquitine de type K48 promouvant sa dégradation par le protéasome, mais également par des chaînes d'ubiquitine K63 dont leur fonction est encore inconnue. L'absence de modification post-traductionnelles sur les 5 dernières lysines de DEPTOR augmente drastiquement la phosphorylation de la tyrosine 289 suggérant que la méthylation ou l'ubiquitination affecte cette modification. Nous avons également trouvé que DEPTOR pouvait être NEDDylée dans sa portion N-terminale au niveau de ses domaines DEP. Une analyse de spectrométrie de masse après des expériences de marquage de proximité par biotinilation a permis d'identifier de multiples enzymes pouvant potentiellement moduler ces modifications. Toutes ces modifications ouvrent la porte à de nouvelles avenues de régulation de l'activité de DEPTOR sur mTOR. L'implication de KDM4A sur l'activité de DEPTOR de même que la phosphorylation de la tyrosine 289 de DEPTOR se révèlent comme de nouveaux mécanismes régulant l'activité de mTOR pouvant expliquer l'augmentation de l'activité de mTOR dans les cancers où la voie canonique n'est pas affectée. Cela pourrait ouvrir la voie à de nouvelles avenues thérapeutiques qui, combinées à celles déjà existantes, permettra d'offrir des traitements prometteurs lorsque cette voie est dérégulée, notamment dans les gliomes de bas grade.Dysregulated mTOR (mechanistic Target Of Rapamycin) is a potent tumor growth inducer known to promote cancer cell proliferation and survival. Its activity can be regulated by numerous factors composing the PTEN/PI3K/AKT canonical pathway, which are often mutated in cancer. However, in a subset of cancer showing a constitutively activated mTOR, there is no alteration within the canonical activation pathway, suggesting different activation mechanisms. Low-grade gliomas harbor mutation on Isocitrate dehydrogenase 1 and 2 (IDH1/2) conferring gain-of-function by the production of 2-Hydroxyglutarate (2HG) from α Ketoglutarate (αKG). This leads to a constitutive mTOR activation in a canonical independent manner. An RNAi screen led us to identify KDM4A, a αKG dependant lysine demethylase as a new regulator of mTOR activity. KDM4A interacts with DEPTOR, an endogenous inhibitor of mTOR and member of both mTOR complex. Depletion or inhibition of KDM4A by 2HG decreases DEPTOR stability and thereby increases mTOR activity. We also discovered a new post-translational modification (PTM) on DEPTOR, corresponding to a single phosphorylation event on tyrosine 289. While this modification increases DEPTOR stability, it also promotes its dissociation from mTORC1&2, leading to a rapid and sustain increase in mTORC1&2 activity. To identify the upstream signaling pathway(s) leading to tyrosine 289 phosphorylation, we performed mass spectrometry analysis, as well as a small drug screen of different tyrosine kinase inhibitors. Using these combined methods, we identify SYK (Spleen tyrosine kinase), whose expression levels correlate with levels of tyrosine 289 phosphorylation. We also found that SYK-induced phosphorylation of DEPTOR was regulated by the EPHB2 receptor. We have shown that DEPTOR harbors many other PTM like ubiquitination conjugated on lysine 48 promoting proteasomal degradation and ubiquitination conjugated on lysine 63 whose function is still unknown. The absence of PTM on the last 5 lysines of DEPTOR drastically increases the phosphorylation of tyrosine 289 suggesting that methylation and/or ubiquitination affect this modification. We also found that DEPTOR can be NEDDylated in its N-terminal part on its DEP domains. Mass spectrometry analysis after proximity biotinilation assays led us to discover multiple enzymes that could potentially modulate all these modifications. This open new insight on DEPTOR regulation and function on mTOR. Our findings uncovered new mechanisms regulating DEPTOR activity, which can explain the increased mTOR activity in cancer with unaffected PTEN/PI3K/AKT regulatory pathways. Better understanding of this mTOR/DEPTOR regulatory pathway could allow the development of a new therapeutic approach to inhibit mTOR associated cancer progression

    The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway

    Get PDF
    The identification of cancer-associated mutations in the tricarboxylic acid (TCA) cycle enzymes isocitrate dehydrogenases 1 and 2 (IDH1/2) highlights the prevailing notion that aberrant metabolic function can contribute to carcinogenesis. IDH1/2 normally catalyse the oxidative decarboxylation of isocitrate into α-ketoglutarate (αKG). In gliomas and acute myeloid leukaemias, IDH1/2 mutations confer gain-of-function leading to production of the oncometabolite R-2-hydroxyglutarate (2HG) from αKG. Here we show that generation of 2HG by mutated IDH1/2 leads to the activation of mTOR by inhibiting KDM4A, an αKG-dependent enzyme of the Jumonji family of lysine demethylases. Furthermore, KDM4A associates with the DEP domain-containing mTOR-interacting protein (DEPTOR), a negative regulator of mTORC1/2. Depletion of KDM4A decreases DEPTOR protein stability. Our results provide an additional molecular mechanism for the oncogenic activity of mutant IDH1/2 by revealing an unprecedented link between TCA cycle defects and positive modulation of mTOR function downstream of the canonical PI3K/AKT/TSC1-2 pathway

    The downward spiral of mental disorders and educational attainment: a systematic review on early school leaving.

    Get PDF
    BACKGROUND: Most psychiatric disorders present symptom patterns that cause severe impairment on the emotional, cognitive and social level. Thus, adolescents who suffer from a mental disorder risk finding themselves in a downward spiral caused by the reciprocal association of psychological symptoms and negative school experiences that may culminate in early school leaving. In addition to previous collective work that mainly focused on school refusing behaviour among children and was presented as an expert's opinion, the following systematic review fills the knowledge gap by providing a structured overview of the bidirectional association between mental health and secondary school dropout based on a sound methodology and with a particular focus on mediating factors. METHODS: Four electronic databases were searched from January 1990 until June 2014. Selected references were assessed for study details, main results, mediating factors and methodological limitations. Standardized risk of bias assessment was conducted. RESULTS: Mood and anxiety disorders seemed to have a less consequential direct effect on early school leaving than substance use and disruptive behaviour disorders. The association between externalizing disorders and educational attainment was even stronger when the disorder occurred early in life. On the other hand, internalizing disorders were reported to develop as a consequence of school dropout. Only few studies had addressed gender differences, with discrepant results. Socio-economic background, academic achievement and family support were identified as significant mediating factors of the association between mental disorders and subsequent educational attainment. CONCLUSIONS: Findings suggested a strong association between mental health and education, in both directions. However, most studies focused on mediating factors that could not be targeted by intervention programs

    A Lactococcal Phage Protein Promotes Viral Propagation and Alters the Host Proteomic Response During Infection

    No full text
    The lactococcal virulent phage p2 is a model for studying the Skunavirus genus, the most prevalent group of phages causing milk fermentation failures in cheese factories worldwide. This siphophage infects Lactococcus lactis MG1363, a model strain used to study Gram-positive lactic acid bacteria. The structural proteins of phage p2 have been thoroughly described, while most of its non-structural proteins remain uncharacterized. Here, we developed an integrative approach, making use of structural biology, genomics, physiology, and proteomics to provide insights into the function of ORF47, the most conserved non-structural protein of unknown function among the Skunavirus genus. This small phage protein, which is composed of three α-helices, was found to have a major impact on the bacterial proteome during phage infection and to significantly reduce the emergence of bacteriophage-insensitive mutants

    SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing

    No full text
    Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5′ splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5′ splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5′ splice sites.ISSN:1362-4962ISSN:0301-561

    The Multidimensional Work Motivation Scale: Validation evidence in seven languages and nine countries

    Get PDF
    Self-determination theory proposes a multidimensional conceptualization of motivation comprising autonomous and controlled forms. Whereas autonomous motivation relates positively to individuals’ optimal functioning (e.g., well-being, performance), controlled motivation is less beneficial. To be able to use self-determination theory in the field of organizational behaviour, the Multidimensional Work Motivation Scale was developed and tested using data from 3435 workers in seven languages and nine countries. Factorial analyses indicated that the 19-item scale has the same factor structure across the seven languages. Convergent and discriminant validity tests across the countries also indicate that the psychological needs for autonomy, competence, and relatedness as well as the theoretically derived antecedents to work motivation (e.g., leadership and job design) are predictably related to the different forms of motivation, which in turn are predictably related to important work outcomes (e.g., well-being, commitment, performance, and turnover intentions). Implications for the development of organizational research based on self-determination theory are discussed

    J Agric Food Chem

    No full text
    Pulsed electric field (PEF) treatment is an emerging technology that is arousing increasing interest in vinification processes for its ability to enhance polyphenol extraction performance. The aim of this study was to investigate the effects of PEF treatment on grape skin histocytological structures and on the organization of skin cell wall polysaccharides and tannins, which, until now, have been little investigated. This study relates to the effects of two PEF treatments on harvested Cabernet Sauvignon berries: PEF1 (medium strength (4 kV/cm); short duration (1 ms)) and PEF2 (low intensity (0.7 kV/cm); longer duration (200 ms)). Histocytological observations and the study of levels of polysaccharidic fractions and total amounts of tannins allowed differentiation between the two treatments. Whereas PEF1 had little effect on the polyphenol structure and pectic fraction, PEF2 profoundly modified the organization of skin cell walls. Depending on the PEF parameters, cell wall structure was differently affected, providing variable performance in terms of polyphenol extraction and wine quality

    Effects of Pulsed Electric Fields on Cabernet Sauvignon Grape Berries and on the Characteristics of Wines

    Get PDF
    The treatment of Cabernet Sauvignon red grapes by pulsed electric fields (PEFs) is performed prior to vinification in order to enhance the extraction of polyphenols. PEF treatments of the longest duration and of the highest energy (E = 0.7 kV/cm, t (PEF) = 200 ms, W = 31 Wh/kg) changed the structure of grape skins and produced a wine that was richer in tannins (34 %), while treatment of the highest strength (E = 4 kV/cm, t (PEF) = 1 ms, W = 4 Wh/kg) altered the visual appearance of phenolic compounds in the skins and led to greater extraction of the anthocyanins (19 %). The PEF treatments caused the depolymerization of skin tannins, improving the diffusion of these decondensed tannins which are smaller. The PEF treatment of longest duration and of the highest energy had more impact on the parietal tannins and the cell walls of the skins while treatment of the highest strength modified more the vacuolar tannins. Changes in the operating parameters of the PEF treatment (E = 0.7 to 4 kV/cm, t (PEF) = 1 to 200 ms, W = 4 to 31 Wh/kg) did not affect alcohol content, total acidity nor volatile acidity in finished wines compared to the values of the control wine, but seemed to cause a slight increase in pH (1-2 %)
    corecore